Skip to main content

Advertisement

Log in

Structure-based exploration of an allosteric binding pocket in the NTS1 receptor using bitopic NT(8-13) derivatives and molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Crystal structures of neurotensin receptor subtype 1 (NTS1) allowed us to visualize the binding mode of the endogenous peptide hormone neurotensin and its pharmacologically active C-terminal fragment NT(8-13) within the orthosteric binding pocket of NTS1. Beneath the orthosteric binding pocket, we detected a cavity that exhibits different sequences in the neurotensin receptor subtypes NTS1 and NTS2. In this study, we explored this allosteric binding pocket using bitopic test peptides of type NT(8-13)-Xaa, in which the C-terminal part of NT(8-13) is connected to different amino acids that extend into the newly discovered pocket. Our test compounds showed nanomolar affinities for NTS1, a measurable increase in subtype selectivity compared to the parent peptide NT(8-13), and the capacity to activate the receptor in an IP accumulation assay. Computational investigation of the selected test compounds at NTS1 showed a conserved binding mode within the orthosteric binding pocket, whereas the allosteric cavity was able to adapt to different residues, which suggests a high degree of structural plasticity within that cavity of NTS1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carraway R, Leeman SE (1975) The amino acid sequence of a hypothalamic peptide, neurotensin. J Biol Chem 250:1907–1911

  2. Binder EB, Kinkead B, Owens MJ, Nemeroff CB (2001) Neurotensin and dopamine interactions. Pharmacol Rev 53:453–486

    CAS  PubMed  Google Scholar 

  3. Kasckow J, Nemeroff CB (1991) The neurobiology of neurotensin: focus on neurotensin-dopamine interactions. Regul Pept 36:153–164

  4. Fuxe K, Von Euler G, Agnati LF et al (1992) Intramembrane interactions between neurotensin receptors and dopamine D2 receptors as a major mechanism for the neuroleptic-like action of neurotensin. Ann New York Acad Sci 668:186–204

    Article  CAS  Google Scholar 

  5. Clineschmidt BV, McGuffin JC, Bunting PB (1979) Neurotensin: antinocisponsive action in rodents. Eur J Pharmacol 54:129–139

    Article  CAS  PubMed  Google Scholar 

  6. Boules M, Liang Y, Briody S et al (2010) NT79: a novel neurotensin analog with selective behavioral effects. Brain Res 1308:35–46. https://doi.org/10.1016/j.brainres.2009.10.050

  7. Schaab C, Kling RC, Einsiedel J et al (2014) Structure-based evolution of subtype-selective neurotensin receptor ligands. Chem Open 3:206–218. https://doi.org/10.1002/open.201402031

    Article  CAS  Google Scholar 

  8. Einsiedel J, Held C, Hervet M et al (2011) Discovery of highly potent and neurotensin receptor 2 selective neurotensin mimetics. J Med Chem 54:2915–2923. https://doi.org/10.1021/jm200006c

    Article  CAS  PubMed  Google Scholar 

  9. Harterich S, Koschatzky S, Einsiedel J, Gmeiner P (2008) Novel insights into GPCR–peptide interactions: mutations in extracellular loop 1, ligand backbone methylations and molecular modeling of neurotensin receptor 1. Bioorg Med Chem 16:9359–9368. https://doi.org/10.1016/j.bmc.2008.08.051

  10. Held C, Hübner H, Kling R et al (2013) Impact of the proline residue on ligand binding of neurotensin receptor 2 (NTS2)-selective peptide-peptoid hybrids. ChemMedChem 8:772–778. https://doi.org/10.1002/cmdc.201300054

    Article  CAS  PubMed  Google Scholar 

  11. Pratsch G, Unfried JF, Einsiedel J et al (2011) Radical arylation of tyrosine and its application in the synthesis of a highly selective neurotensin receptor 2 ligand. Org Biomol Chem 9:3746–3752. https://doi.org/10.1039/C1ob05292f

    Article  CAS  PubMed  Google Scholar 

  12. Einsiedel J, Hubner H, Hervet M et al (2008) Peptide backbone modifications on the C-terminal hexapeptide of neurotensin. Bioorg Med Chem Lett 18:2013–2018. https://doi.org/10.1016/j.bmcl.2008.01.110

    Article  CAS  PubMed  Google Scholar 

  13. Richelson E, McCormick DJ, Pang Y-P, Phillips KS (2009) Peptide analogs that are potent and selective for human neurotensin preceptor subtype 2. US Patent US20110263507A1

  14. Cusack B, McCormick DJ, Pang YP et al (1995) Pharmacological and biochemical profiles of unique neurotensin 8-13 analogs exhibiting species selectivity, stereoselectivity, and superagonism. J Biol Chem 270:18359–18366

    Article  CAS  PubMed  Google Scholar 

  15. Tourwe D, Iterbeke K, Török G, et al (2002) Pro10-Tyr11 substitutions provide potent or selective NT(8-13) analogs. In: Benedetti E, Pedone C (eds) Peptides 2002, Proc 27th European Peptide Symposium, Napoli, Italy, 31 Aug–6 Sept 2002, pp 304–305

  16. Valant C, Robert Lane J, Sexton PM, Christopoulos A (2012) The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. Ann Rev Pharmacol Toxicol 52:153–178. https://doi.org/10.1146/annurev-pharmtox-010611-134514

    Article  CAS  Google Scholar 

  17. Kruse AC, Ring AM, Manglik A et al (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101–106. https://doi.org/10.1038/nature12735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan Q, Zhu Y, Li J et al (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341:1387–1390. https://doi.org/10.1126/science.1241475

    Article  CAS  PubMed  Google Scholar 

  19. Wu B, Chien EY, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071. https://doi.org/10.1126/science.1194396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Egloff P, Hillenbrand M, Klenk C et al (2014) Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci USA 111:655–662. https://doi.org/10.1073/pnas.1317903111

  21. White JF, Noinaj N, Shibata Y et al (2012) Structure of the agonist-bound neurotensin receptor. Nature 490:508–513. https://doi.org/10.1038/nature11558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hubner H, Haubmann C, Utz W, Gmeiner P (2000) Conjugated enynes as nonaromatic catechol bioisosteres: synthesis, binding experiments, and computational studies of novel dopamine receptor agonists recognizing preferentially the D(3) subtype. J Med Chem 43:756–762

    Article  CAS  PubMed  Google Scholar 

  23. Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24:596–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  25. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  26. Liu H, Hofmann J, Fish I et al (2018) Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists. Proc Natl Acad Sci 115:12046–12050. https://doi.org/10.1073/pnas.1813988115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weichert D, Kruse AC, Manglik A et al (2014) Covalent agonists for studying G protein-coupled receptor activation. Proc Natl Acad Sci USA 111:10744–10748. https://doi.org/10.1073/pnas.1410415111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Molec Biol 234:779–815. https://doi.org/10.1006/jmbi.1993.1626

  29. Hiller C, Kling RC, Heinemann FW et al (2013) Functionally selective dopamine D2/D3 receptor agonists comprising an enyne moiety. J Med Chem 56:5130–5141. https://doi.org/10.1021/jm400520c

    Article  CAS  PubMed  Google Scholar 

  30. Hornak V, Abel R, Okur A et al (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725. https://doi.org/10.1002/prot.21123

  31. van der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

  32. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447. https://doi.org/10.1021/ct700301q

  33. Möller D, Kling RC, Skultety M et al (2014) Functionally selective dopamine D2, D3 receptor partial agonists. J Med Chem 57:4861–4875. https://doi.org/10.1021/jm5004039

    Article  CAS  PubMed  Google Scholar 

  34. Goetz A, Lanig H, Gmeiner P, Clark T (2011) Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor. J Molec Biol 414:611–623. https://doi.org/10.1016/j.jmb.2011.10.015

  35. Schrodinger, LLC (2010) The PyMOL molecular graphics system, version 1.3r1. Schrodinger, LLC, New York

  36. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gmeiner.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection Tim Clark 70th Birthday Festschrift

Electronic supplementary material

ESM 1

(DOCX 10271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kling, R.C., Burchardt, C., Einsiedel, J. et al. Structure-based exploration of an allosteric binding pocket in the NTS1 receptor using bitopic NT(8-13) derivatives and molecular dynamics simulations. J Mol Model 25, 193 (2019). https://doi.org/10.1007/s00894-019-4064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4064-x

Keywords

Navigation