Skip to main content
Log in

Nonbonding interaction analyses on PVDF/[BMIM][BF4] complex system in gas and solution phase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present study provides a detailed quantum chemical description of the physicochemical interactions between poly-vinylidene fluoride (PVDF) and 1-butyl-3-methyl-imidazolium tetrafluoro borate ([BMIM][BF4]) ionic liquid (IL). Geometry optimization and frequency calculations are carried out for four monomer units of α- and β-PVDF, [BMIM][BF4], and PVDF/[BMIM][BF4] using dispersion corrected density functional theory. The effects of solvation on the systems under study are demonstrated for three polar aprotic solvents, namely tetra-hydrofuran (THF), acetone, and n,n-dimethyl formamide (DMF) using the integral equation formalism polarizable continuum model (IEFPCM). Calculated negative solvation free energy values suggest solution phase stability of the systems under study. Binding and interaction energies for β-PVDF/IL are found higher in magnitude than those for α-PVDF/IL. The nonbonding interaction phenomenon of β-PVDF/[BMIM][BF4] is elucidated on the basis of natural bond orbital (NBO), Bader’s quantum theory of atoms in molecules (QTAIM), delocalization indices, Hirshfeld surface, and reduced density gradient (RDG) analyses. Both anions and cations of ionic liquids are found to show weak van der Waals interaction with PVDF molecule but the anion ([BF4])/PVDF interaction is found to be stronger than cation ([BMIM]+)/PVDF interaction. Inter-unit C−H⋯F type hydrogen bonds are found to show improper (causing blue shifts in vibrational frequencies) nature. Frontier molecular orbital analysis is carried out, and different chemical parameters like electronegativity, chemical potential, chemical hardness and softness, and electrophilicity index are calculated using Koopmans’ theorem. Thermochemical calculations are also performed, and the variation in different standard thermodynamic parameters with temperature is formulated.

(a) Hirshfeld surface mapped onto electron density and (b) NCI isosurfaces showing inter-unit interactions of β-PVDF/[BMIM][BF4]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon, Oxford

    Google Scholar 

  2. Itoh A, Takahashi Y, Furukawa T, Yajima H (2014) Solid-state calculations of poly(vinylidene fluoride) using the hybrid DFT method: spontaneous polarization of polymorphs. Polym J 46:207–211

    Article  CAS  Google Scholar 

  3. Bohlé M, Bolton K (2014) Conformational studies of poly(vinylidene fluoride), poly(trifluoroethylene) and poly(vinylidene fluoride-co-trifluoroethylene) using density functional theory. Phys Chem Chem Phys 16:12929–12939

    Article  CAS  Google Scholar 

  4. Nabata Y (1990) Structure of crosslinked poly (vinylidene fluoride) crystallized from melt under uniaxial compression. Jpn J Appl Phys 29:1298–1303

    Article  CAS  Google Scholar 

  5. Gomes J, Nunes JS, Sencadas V, Lanceros-Mendez S (2010) Influence of the β-phase content and degree of crystallinity on the piezo-and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19:065010 1–065010 7

    Article  CAS  Google Scholar 

  6. Qian X, Wu S, Furman E, Zhang Q, Su J (2015) Ferroelectric polymers as multifunctional electroactive materials: recent advances, potential, and challenges. MRS Commun 5(2):115–129

    Article  CAS  Google Scholar 

  7. Abolhasani MM, Zarejousheghani F, Cheng ZX, Naebe M (2015) A facile method to enhance ferroelectric properties in PVDF nanocomposites. RSC Adv 5:22471–22479

    Article  CAS  Google Scholar 

  8. Mofokeng TG, Luyt AS, Pavlovic VP, Pavlovic VB, Dudic D, Vlahovic B, Djokovic V (2014) Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. J Appl Phys 115:084109 1-9

    Article  CAS  Google Scholar 

  9. Mahdi RI, Gan WC, Halim NA, Velayutham TS, Majid WHA (2015) Ferroelectric and pyroelectric properties of novel lead-free polyvinylidenefluoride-trifluoroethylene-Bi0.5Na0.5TiO3 nanocomposite thin films for sensing applications. Ceram Int 41:13836–13843

    Article  CAS  Google Scholar 

  10. Zeng H, Sabirianov R, Mryasov O, Yan ML, Cho K, Sellmyer DJ (2002) Curie temperature of FePt : B2O3 nanocomposite films. Phys Rev B 127:1–6

    Google Scholar 

  11. Lee WG, Park BE, Park KE (2013) Ferroelectric properties of the organic films of poly(vinylidene fluoride-trifluoroethylene) blended with inorganic Pb(Zr, Ti)O3. Thin Solid Films 546:171–175

    Article  CAS  Google Scholar 

  12. Xia W, Xu Z, Wen F, Zhang Z (2012) Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceram Int 38:1071–1075

    Article  CAS  Google Scholar 

  13. Chan HLW, Chan WK, Zhang Y, Choy CL (1998) Pyroelectric and piezoelectric properties of lead titanate/polyvinylidene fluoride-trifluoroethylene 0-3 composites. IEEE Trans Dielectr Electr Insul 5:505–512

    Article  CAS  Google Scholar 

  14. Fang M, Wang Z, Li H, Wen Y (2015) Fabrication and dielectric properties of Ba(Fe0.5Nb0.5)O3/poly(vinylidene fluoride) composites. Ceram Int 117:1–6

    Google Scholar 

  15. Xing C, You J, Li Y, Li J (2015) Nanostructured poly(vinylidene fluoride)/ionic liquid composites: formation of organic conductive nanodomains in polymer matrix. J Phys Chem C 119:21155–21164

    Article  CAS  Google Scholar 

  16. Dias JC, Lopes AC, Magalhães B, Botelho G, Silva MM, Esperança JMSS, Lanceros-Mendez S (2015) High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride). Polym Test 48:199–205

    Article  CAS  Google Scholar 

  17. Mejri R, Dias JC, Lopes AC, Hentati SB, Silva MM, Botelho G, Mão de Ferro A, Esperança JMSS, Maceiras A, Laza JM, Vilas JL, León LM, Lanceros-Mendez S (2015) Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechaical actuators. Eur Polym J 71:304–313

    Article  CAS  Google Scholar 

  18. Wang F, Lack A, Xie Z, Frübing P, Taubert A, Gerhard R (2012) Ionic-liquid-induced ferroelectric polarization in poly(vinylidene fluoride) thin films. Appl Phys Lett 100:1–6

    Google Scholar 

  19. Liang CL, Mai ZH, Xie Q, Bao RY, Yang W, Xie BH, Yang MB (2014) Induced formation of dominating polar phases of poly(vinylidene fluoride): positive ion−CF2 dipole or negative ion−CH2 dipole interaction. J Phys Chem B 118:9104–9111

    Article  CAS  Google Scholar 

  20. Grimme S (2011) Density functional theory with London dispersion correction. WIREs Comput Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  21. Clark T, Koch R (1999) The chemist’s electronic book of orbitals. Springer, Heidelberg

    Book  Google Scholar 

  22. Sarkar R, Kundu TK (2018) Density functional theory studies on PVDF/ionic liquid composite systems. J Chem Sci 130:115

    Article  CAS  Google Scholar 

  23. Levine IN (2012) Quantum chemistry, 7th edn. Pearson, New York

    Google Scholar 

  24. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  25. Garcia-Revilla M, Fransisco E, Popelier PLA, Pendas AM (2013) Domain-averaged exchange-correlation energies as a physical underpinning for chemical graphs. ChemPhysChem 14:1211–1218

    Article  CAS  Google Scholar 

  26. Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal. Chem Phys Lett 267:215–220

    Article  CAS  Google Scholar 

  27. C-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632

    Article  CAS  Google Scholar 

  28. Ma W, Zhang J, Wang X (2008) Formation of poly(vinylidene fluoride) crystalline phases from tetrahydrofuran/N,N-dimethyl formamide mixed solvent. J Mater Sci 43:398–401

    Article  CAS  Google Scholar 

  29. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  30. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum model solvation. 1. General formalism. J Chem Phys 132:114110 1-15

    Article  CAS  Google Scholar 

  31. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GJ, Fox DJ (2009) Gaussian 09, revision a.01. Gaussian Inc, Wallingford

    Google Scholar 

  32. Dennington R D, Ketith T A, Millam J M (2008) GaussView 5.0.8. Gaussian Inc, Wallingford

  33. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  35. Pal S, Kundu TK (2013) DFT-based inhibitor and promoter selection criteria for pentagonal dodecahedron methane hydrate cage. J Chem Sci 125:1259–1266

    Article  CAS  Google Scholar 

  36. Řezáč J, Hobza P (2016) Benchmark calculations of interaction energies in noncovalent complexes and their applications. Chem Rev 116:5038–5071

    Article  CAS  Google Scholar 

  37. Duijneveldt FBV, Duijneveldt-van JGCMV, Lenthe JHV (1994) State of the art in counterpoise theory. Chem Rev 94:1873–1885

    Article  Google Scholar 

  38. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94:1837–1930

    Article  Google Scholar 

  39. Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, Bozkaya U, Sokolov AY, Di Remigio R, Richard RM, Gonthier JF, James AM, McAlexander HR, Kumar A, Saitow M, Wang X, Pritchard BP, Verma P, Schaefer HF, Patkowski K, King RA, Valeev EF, Evangelista FA, Turney JM, Crawford TD, Sherrill CD (2017) Psi4 1.1: an open-source electronic structure program emphasizing automation, advanced libraries, and interoperability. J Chem Theory Comput 13(7):3185–3197

    Article  CAS  Google Scholar 

  40. Ho J, Erton MZ (2016) Calculating free energy changes in continuum solvation models. J Phys Chem B 120:1319–1329

    Article  CAS  Google Scholar 

  41. Solymar L, Walsh D, Syms RRA (2014) Electronic properties of materials, 9th edn. Oxford University Press, Oxford

    Google Scholar 

  42. Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107(20):4184–4195

    Article  CAS  Google Scholar 

  43. Tsuneda T, Song JW, Suzuki S, Hirao K (2010) On Koopmans’ theorem in density functional theory. J Chem Phys 133:174101–174109

    Article  CAS  Google Scholar 

  44. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  45. Pal S, Kundu TK (2013) Stability analysis and frontier orbital study of different glycol and water complex. ISRN Phys Chem 2013:753139

    Article  CAS  Google Scholar 

  46. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  CAS  Google Scholar 

  47. Guillaumes L, Salvador P, Simon S (2014) A fuzzy-atom analysis of electron delocalization on hydrogen bonds. J Phys Chem A 118:1142–1149

    Article  CAS  Google Scholar 

  48. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  49. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  50. Elyukhin VA (2016) Statistical thermodynamics of semiconductor alloys. Elsevier, Waltham

    Google Scholar 

  51. Irikura KK (2002) Thermo. Pl. National Institute of Standards and Technology, Gaithersburg, MD

  52. Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H (1971) Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym J 3:600–610

    Article  Google Scholar 

  53. Wang ZY, Fan HQ, Su KH, Wen ZY (2006) Structure and piezoelectric properties of poly(vinylidene fluoride) studied by density functional theory. Polym J 47:7988–7996

    Article  CAS  Google Scholar 

  54. Wu C, Visscher AD, Gates ID (2018) Interactions of biodegradable ionic liquids with a model napthenic acid. Nat Sci Rep 8:176

    Article  CAS  Google Scholar 

  55. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  56. Bahadur I, Kgomotso M, Ebenso EE, Redhi G (2016) Influence of temperature on molecular interactions of imidazolium-based ionic liquids with acetophenone: thermodynamic properties and quantum chemical studies. RSC Adv 6:104708–104723

    Article  CAS  Google Scholar 

  57. Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p). J Phys Chem A 109:2937–2941

    Article  CAS  Google Scholar 

  58. Ramer NJ, Marrone T, Stiso KA (2006) Structure and vibrational frequency determination for α-poly(vinylidene fluoride) using density-functional theory. Polym J 47:7160–7165

    Article  CAS  Google Scholar 

  59. Katsyuba SA, Zvereva EE, Vidis A, Dyson PJ (2007) Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J Phys Chem A 111:352–370

    Article  CAS  Google Scholar 

  60. Shalu CSK, Singh RK, Chandra S (2003) Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. J Phys Chem B 117:897–906

    Article  CAS  Google Scholar 

  61. Nalwa HS (1995) Ferroelectric polymers: chemistry, physics and applications. Dekker, New York

    Book  Google Scholar 

  62. Jeon Y, Sung J, Seo C, Lim H, Cheong H, Kang M, Moon B, Ouchi Y, Kim D (2008) Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J Phys Chem B 112:4735–4740

    Article  CAS  Google Scholar 

  63. Cammi R, Cappelli C, Corni S, Tomasi J (2000) On the calculation of infrared intensities in solution within the polarizable continuum. J Phys Chem A 104:9874–9879

    Article  CAS  Google Scholar 

  64. Yuan C, Yu H, Jia M, Su P, Luo Z, Yao J (2016) A theoretical study of weak interactions in phenylenediamine homodimer clusters. Phys Chem Chem Phys 18:29249–29257

    Article  CAS  Google Scholar 

  65. Kerelson M, Zerner MC (1990) On the n-π* blue shift accompanying solvation. J Am Chem Soc 112:9405–9406

    Article  Google Scholar 

  66. Kumar PSV, Raghavendra V, Subramanian V (2016) Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J Chem Sci 10:1527–1536

    Article  CAS  Google Scholar 

  67. Olmo L, Morera-Boado C, Lopez R, Garcia de La Vega JM (2014) Electron density analysis of 1-butyl-3-methylimidazolium chloride ionic liquid. J Mol Model 20:2175 1–10

    Article  CAS  Google Scholar 

  68. Venkataraman NS, Suvitha A, Kawazoe Y (2017) Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: a DFT, NBO, AIM and NCI analysis. J Mol Graph Model 78:48–60

    Article  CAS  Google Scholar 

  69. Yoosefian M, Etminan N (2016) The role of solvent polarity in electronic properties, stability and reactive trend of a tryptophane/Pd doped SWCNT novel nanobiosensor from polar protic to non-polar solvents. RSC Adv 6:64818–64825

    Article  CAS  Google Scholar 

  70. Jablonski M (2018) Bond paths between distant atoms do not necessarily indicate dominant interactions. J Comput Chem 39:2183–2195

    Article  CAS  Google Scholar 

  71. Foroutan-Nejad C, Shahbazian S, Marek R (2018) Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions, and bond/line paths. Chemistry 20:10140–10152

    Article  CAS  Google Scholar 

  72. Garcia-Revilla M, Popelier PLA, Fransisco E, Pendas AM (2011) Nature of chemical interactions from the profiles of electron delocalization indices. J Chem Theory Comput 7:1704–1711

    Article  CAS  Google Scholar 

  73. Mayer I, Salvador P (2009) Effective atomic orbitals for fuzzy atoms. J Chem Phys 130:234106

    Article  CAS  Google Scholar 

  74. Jablonski M, Sadlej AJ (2007) Blue-shifting intermolecular C−H⋯O interactions. J Phys Chem A 111:3423–3431

    Article  CAS  Google Scholar 

  75. Hobza P, Havlas Z (2002) Improper, blue-shifting hydrogen bond. Theor Chem Accounts 108:325–334

    Article  CAS  Google Scholar 

  76. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4263

    Article  CAS  Google Scholar 

  77. Hobza P, Spirko V (1998) Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes. J Phys Chem A 102(15):2501–2504

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Kundu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17901 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, R., Kundu, T.K. Nonbonding interaction analyses on PVDF/[BMIM][BF4] complex system in gas and solution phase. J Mol Model 25, 131 (2019). https://doi.org/10.1007/s00894-019-4020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4020-9

Keywords

Navigation