Skip to main content
Log in

Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In protein electron transfer reaction rate calculations, the electronic Hamiltonian is apportioned into donor–acceptor (DA) and protein bridge subspaces, and a two-state system is defined for the DA subspace. Löwdin partitioning is used to perform the two-state reductions necessary to compute the tunneling matrix element between D and A sites. Here, a method of performing donor and acceptor state analysis for a non-orthogonal basis set in both the weak and strong electronic coupling regimes is developed. The electron tunneling current and coupling are obtained in terms of DA symmetric and antisymmetric interatomic tunneling elements, and are then used to compare pathway models. These interatomic tunneling elements are both proportional to the Green’s function elements of the isolated protein bridge. To facilitate a perturbative treatment of antisymmetric interatomic tunneling currents, we found a well-known expression for the DA tunneling matrix element in terms of transformed Green’s function matrix elements of the isolated protein bridge. Also, the relationship of the tunneling matrix element to BO pathways is discussed using the symmetric interatomic coupling. Finally, the definition of the average interatomic and atomic pathway coupling allows us obtain the quantum interference between interatomic tunneling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265

  2. de Andrade PCP, Freire JN (2004) J Chem Phys 120:7811 (and references therein)

  3. Hayashi T, Stuchebrukhov AA (2010) Proc Natl Acad Sci USA 107:19157

  4. Li J, Liu Z, Tan C, Guo X, Wang L, Sancar A, Zhong D (2010) Nature 466:887

  5. Jortner J (1980) Biochim Biophys Acta 594:193

  6. Macconnell M (1961) J Chem Phys 35:508

  7. Hopfield JJ (1974) Proc Natl Acad Sci USA 71:3640

  8. Beratan DN, Onuchic JN, Hopfield JJ (1987) J Chem Phys 86:4488

  9. Onuchic JN, Beratan DN (1990) J Chem Phys 92:722

  10. Beratan DN, Betts JN, Onuchic JN (1991) Science 252:1285

  11. Regan SM, Risser DNB, Onuchic JN (1993) J Phys Chem 97:13083

  12. Kawatsu T, Kakitani T, Yamato T (2001) J Phys Chem B 105:4424

  13. de Andrade PCP, Freire JN (2003) J Chem Phys 118:6733

  14. Prytkova TR, Kurnikov IV, Beratan DN (2007) Science 315:622 (and references therein)

  15. Larsson S (1981) J Am Chem Soc 103:4034

  16. da Gama AAS (1990) J Theor Biol 142:251

  17. Onuchic JN, de Andrade PCP, Beratan DN (1991) J Chem Phys 95:1131

  18. Balabin IA, Onuchic JN (1996) J Phys Chem 100:11573

  19. Skourtis SS, Onuchic JN, Beratan DN (1996) Inorg Chim Acta 243:167

  20. Stuchebrukhov AA (1996) J Chem Phys 104:8424

  21. Stuchebrukhov AA (1996) J Chem Phys 105:10819

  22. Kawatsu T, Kakitani T, Yamato T (2000) Inorg Chim Acta 300:862

  23. Kawatsu T, Kakitani T, Yamato T (2002) J Phys Chem B 106:5068

  24. Kawatsu T, Kakitani T, Yamato T (2002) J Phys Chem B 106:11356

  25. Skourtis SS, Onuchic JN (1993) Chem Phys Lett 209:171

  26. Skourtis SS, Beratan DN, Onuchic JN (1993) Chem Phys 176:501

  27. de Andrade PCP (2005) J Chem Phys 122:124713

  28. Newton MD (1991) Chem Rev (Washington D.C.) 91:767

  29. de Andrade PCP, Onuchic JN (1998) J Chem Phys 108:4292 (and references therein)

  30. de Andrade PCP (2012) Int J Quantum Chem 112:3325

  31. Siddarth P, Marcus RA (1990) J Phys Chem 94:2985

  32. Skourtis SS, Beratan DN (1997) J Phys Chem B 101:1215

  33. Nishioka H, Kakitani T (2008) J Phys Chem B 112:9948

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. P. de Andrade.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, P.C.P., Guerra, J.C.O. Donor–acceptor symmetric and antisymmetric tunneling matrix elements: a pathway model investigation of protein electron transfer. J Mol Model 25, 64 (2019). https://doi.org/10.1007/s00894-019-3936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3936-4

Keywords

Navigation