Skip to main content
Log in

New types of organic semiconductors based on diketopyrrolopyrroles and 2,1,3-benzochalcogenadiazoles: a computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A comprehensive computational study is performed on model compounds based on 2,1,3-benzochalcogenadiazoles and diketopyrrolopyrroles of A-π-A′-π-A architecture (A and A′ represent 2,1,3-benzochalcogenadiazoles and diketopyrrolopyrroles, respectively, and π is the bridging unit between them including thiophene, furan, and selenophene) for their utility as organic semiconductors. The compounds were found to possess planar geometry, which is a desired property for organic semiconductors. The electronic properties, including adiabatic and vertical electron affinity (EA), adiabatic and vertical ionization potential (IP), reorganization energy (λ), hole injection barrier and electron injection barrier, transfer integral, and charge mobility, were calculated. The electron affinity is higher in the case of thiophene/selenophene as the linker for a given terminal benzochalcogenadiazole than the corresponding compounds with furan as a linker, while the ionization potential is lowest for compounds having selenophene as the linker with a given terminal benzochalcogenadiazole moiety than the compounds having furan or thiophene as a linker. The hole injection barrier in these compounds is lower than the electron injection barrier, which facilitates the hole injection from the metal electrode, while hole reorganization energy is found to be larger than the electron reorganization energy. The compounds possess hole mobilities in the range of 2.50–4.91 cm2/Vs and electron mobilities in a similar range of 4.58–9.68 cm2/Vs. This study reveals that compounds based on a combination of diketopyrrolopyrrole and 2,1,3-benzochalcogenadiazole units would exhibit hole transporting properties and act as potential ambipolar materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhao X, Zhan X (2011) Electron transporting semiconducting polymers in organic electronics. Chem Soc Rev 40:3728–3743

    Article  CAS  PubMed  Google Scholar 

  2. Anthony JE, Facchetti A, Heeney M, Marder SR, Zhan X (2010) N-type organic semiconductors in organic electronics. Adv Mater 22:3876–3892

    Article  CAS  PubMed  Google Scholar 

  3. Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed Engl 47:4070–4098

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Zhang J, Xing R, Yuan J, Yan D, Han Y (2003) Micropatterning of organic semiconductor microcrystalline materials and OFET fabrication by “hot lift off”. J Am Chem Soc 125:15278–15279

  5. Hepp A, Heil H, Weise W, Ahles M, Schmechel R, Von Seggern H (2003) Light-emitting field-effect transistor based on a tetracene thin film. Phys Rev Lett 91:157406-1–157406-4

    Article  Google Scholar 

  6. Sirringhaus H (2014) 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26:1319–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang C, Dong C, Hu W, Liu Y, Zhu D (2012) Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112:2208–2267

    Article  CAS  PubMed  Google Scholar 

  8. Torrent MM, Rovira C (2011) Role of molecular order and solid-state structure in organic field-effect transistors. Chem Rev 111:4833–4856

    Article  Google Scholar 

  9. O’Neill M, Kelly SM (2011) Ordered materials for organic electronics and photonics. Adv Mater 23:566–584

    Article  PubMed  Google Scholar 

  10. Gupta RK, Ulla H, Satyanarayan MN, Sudhakar AA (2018) A perylene-triazine-based star-shaped green light emitter for organic light emitting diodes. Eur J Org Chem 13:1608–1613

    Article  Google Scholar 

  11. Volz D, Wallesch M, Fléchon C, Danz M, Verma A, Navarro JM, Zink DM, Bräse S, Baumann T (2015) From iridium and platinum to copper and carbon: new avenues for more sustainability in organic light-emitting diodes. Green Chem 17:1988–2011

    Article  CAS  Google Scholar 

  12. Wong MY, Colman EZ (2017) Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv Mater 29:1–54

    Google Scholar 

  13. Liu Y, Li C, Ren Z, Yan S, Bryce MR (2018) All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat Rev Mater 3:1–20

    Article  Google Scholar 

  14. Facchetti A (2013) Polymer donor–polymer acceptor (all-polymer) solar cells. Mater Today 16:123–132

    Article  CAS  Google Scholar 

  15. Bessette A, Hanan GS (2014) Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices. Chem Soc Rev 43:3342–3405

    Article  CAS  PubMed  Google Scholar 

  16. Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41:4245–4272

    Article  CAS  PubMed  Google Scholar 

  17. Li G, Chang WH, Yang Y (2017) Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat Rev Mater 2:1–13

    Google Scholar 

  18. Myers JD, Xue J (2012) Organic semiconductors and their applications in photovoltaic devices. Polym Rev 52:1–37

    Article  CAS  Google Scholar 

  19. Groves C (2017) Simulating charge transport in organic semiconductors and devices: a review. Rep Prog Phys 80:026502

  20. Redondo CS, Kleine P, Roszeitis K, Achenbach T, Kroll M, Thomschke M, Reineke S (2017) Interplay of fluorescence and phosphorescence in organic bioluminescent emitters. J Phys Chem C 121:14946–14953

    Article  Google Scholar 

  21. Reineke S, Seidler N, Yost SR, Prins F, Tisdale WA, Baldo MA (2013) Highly efficient, dual state emission from an organic semiconductor. Appl Phys Lett 103:093302-1–093302-4

    Article  Google Scholar 

  22. Minnaert B, Veelaert P (2012) Guidelines for the bandgap combinations and absorption windows for organic tandem and triplet-junction solar cells. Materials 5:1933–1953

    Article  PubMed Central  Google Scholar 

  23. Kruckemeier L, Kaienburg P, Flohre J, Bittkau K, Zonno I, Krogmeier B, Kirchartz T (2018) Developing design criteria for organic solar cells using well-absorbing non-fullerene acceptors. Commun Phys 27:1–10

    Article  Google Scholar 

  24. Facchetti A (2007) Semiconductors for organic transistors. Mater Today 10:28–37

    Article  CAS  Google Scholar 

  25. Lacalle DC, Gozalvez C, Olano M, Sun X, Franco MM, Hueso LE, Alonso AM (2015) Bisthiadiazole-fused tetraazapentacenequinone: an air-stable solution-processable n-type organic semiconductor. Org Lett 17:5902–5905

    Article  Google Scholar 

  26. Newman CR, Frisbie CD, Filho DA da Silva, Brédas JL, Ewbank PC, Mann, KR (2004) Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chem Mater 16:4436–4451

  27. Zhang Y, Cai X, Bian Y, Li X, Jiang J (2008) Heteroatom substitution of oligothienoacenes: from good p-type semiconductors to good ambipolar semiconductors for organic field-effect transistors. J Phys Chem C 112:5148–5159

    Article  CAS  Google Scholar 

  28. Kim Y, Hong J, Oh JH, Yang C (2013) Naphthalene diimide incorporated thiophene-free copolymers with acene and heteroacene units: comparison of geometric features and electron-donating strength of co-units. Chem Mater 25:3251–3259

    Article  CAS  Google Scholar 

  29. Chen Z, Zheng Y, Yan H, Facchetti A (2009) Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate n-channel organic transistors. J Am Chem Soc 131:8–9

    Article  CAS  PubMed  Google Scholar 

  30. Thalacker C, Roger C, Wurthner F (2006) Synthesis and optical and redox properties of core-substituted naphthalene diimide dyes. J Org Chem 71:8098–8105

    Article  CAS  PubMed  Google Scholar 

  31. Yiseen GA (2014) Synthesis and characterization of new monomer and new polymer of naphthalene diimide: electrochemical and optical studies. Int J Electrochem Sci 9:2575–2588

    Google Scholar 

  32. Queste M, Cadiou C, Pagoaga B, Giraudetc L, Hoffmann N (2010) Synthesis and characterization of 1,7-disubstituted and 1,6,7,12-tetrasubstituted perylenetetracarboxy-3,4:9,10-diimide derivatives. New J Chem 34:2537–2545

    Article  CAS  Google Scholar 

  33. Chen HZ, Ling MM, Mo X, Shi MM, Wang M, Bao Z (2007) Air stable n-channel organic semiconductors for thin film transistors based on fluorinated derivatives of perylene diimides. Chem Mater 19:816–824

    Article  CAS  Google Scholar 

  34. Robb MJ, Newton B, Fors BP, Hawker CJ (2014) One-step synthesis of unsymmetrical n-alkyl-n′-aryl perylenediimides. J Org Chem 79:6360–6365

    Article  CAS  PubMed  Google Scholar 

  35. Huang C, Barlow S, Marder SR (2011) Perylene-3,4,9,10-tetracarboxylic acid diimides: synthesis, physical properties, and use in organic electronics. J Org Chem 76:2386–2407

    Article  CAS  PubMed  Google Scholar 

  36. Rajaram S, Shivanna R, Kandappa SK, Narayan KS (2012) Nonplanar perylenediimides as potential alternatives to fullerenes in organic solar cells. J Phys Chem Lett 3:2405–2408

    Article  CAS  PubMed  Google Scholar 

  37. Handa NV, Mendoza KD, Shirtcliff LD (2011) Syntheses and properties of 1,6 and 1,7 perylene diimides and tetracarboxylic dianhydrides. Org Lett 13:4724–4727

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Wang C, Li C, Motta SD, Negri F, Wang Z (2012) Synthesis and properties of ethylene-annulated di(perylenediimides). Org Lett 14:5278–5281

    Article  CAS  PubMed  Google Scholar 

  39. Liu SY, Liu XJQ, Fan CC, Fu WF, Ling J, Wu JY, Shi MM, Jen AKY, Chen HZ (2014) Pyrene and diketopyrrolopyrrole-based oligomers synthesized via direct arylation for OSC applications. ACS Appl Mater Interfaces 6:6765–6775

    Article  CAS  PubMed  Google Scholar 

  40. Kim KH, Park S, Yu H, Kang H, Song I, Oh JH, Kim BJ (2014) Determining optimal crystallinity of diketopyrrolopyrrole-based terpolymers for highly efficient polymer solar cells and transistors. Chem Mater 26:6963–6970

    Article  CAS  Google Scholar 

  41. Back JY, Yu H, Song I, Kang AH, Shin TJ, Kwon S, Oh JH, Kim YH (2015) Investigation of structure−property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering. Chem Mater 27:1732–1739

    Article  CAS  Google Scholar 

  42. Hong HN, Kim HJ, Kim A, Choi S, Kim YU, Cho MJ, Choi DH (2018) Tunable intrinsic semiconducting properties of diketopyrrolopyrrole-based copolymers withd electron donating thiophene and electron accepting thiazole moieties. Synth Met 236:1–7

    Article  CAS  Google Scholar 

  43. Shi Y, Guo H, Qin M, Zhao J, Wang Y, Wang H, Wang Y, Facchetti A, Lu X, Guo X (2018) Thiazole imide-based all-acceptor homopolymers: achieving high-performance unipolar electron transport in organic thin-film transistors. Adv Mater 30:1705745

    Article  Google Scholar 

  44. Mamada M, Nishida JI, Kumaki D, Tokito S, Yamashita Y (2007) N-type organic field effect transistors with high electron mobilities based on thiazole-thiazolothiazole conjugated molecules. Chem Mater 19:5404–5409

    Article  CAS  Google Scholar 

  45. Guo X, Puniredd SR, He B, Marszalek T, Baumgarten M, Pisula W, Müllen K (2014) Combination of two diketopyrrolopyrrole isomers in one polymer for ambipolar transport. Chem Mater 26:3595–3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. An C, Marszalek T, Guo X, Puniredd SR, Wagner M, Pisula W, Baumgarten M (2015) Tuning the optoelectronic properties of dual-acceptor based low-bandgap ambipolar polymers by changing the thiophene-bridge length. Polym Chem 6:6238–6245

    Article  CAS  Google Scholar 

  47. Zhang C, Zhao G, Zeng W, Tian K, Dong H, Hu W, Qin J, Yang C (2015) Ambipolar copolymer of dithienocoronenedi-imide and benzo (bis) thiadiazole with balanced hole and electron mobility. Org Electron 16:101–108

    Article  CAS  Google Scholar 

  48. Patil H, Gupta A, Bilic A, Bhosale SV, Bhosale SV (2014) A solution-processable electron acceptor based on diketopyrrolopyrrole and naphthalenediimide motifs for organic solar cells. Tetrahedron Lett 55:4430–4432

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, and Fox DJ (2013) Gaussian 09 in Revision E.01. Gaussian, Inc., Wallingford, CT

  50. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley, New York

  51. O’Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comp Chem 29:839–845

    Article  Google Scholar 

  52. Nelsen SF, Blackstock SC, Kim Y (1987) Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations. J Am Chem Soc 109:677–682

    Article  CAS  Google Scholar 

  53. McMahon DP, Troisi A (2010) Evaluation of the external reorganization energy of polyacenes. J Phys Chem Lett 1:941–946

    Article  CAS  Google Scholar 

  54. Schein LB (1979) Band-hopping mobility transition in naphthalene and deuterated naphthalene. Phys Rev B 20:1631–1639

    Article  CAS  Google Scholar 

  55. Coropceanu V, Cornil J, Demetrio A, Filho DS, Olivier Y, Silbey R, Bredas JL (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952

    Article  CAS  PubMed  Google Scholar 

  56. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  57. Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  58. Koopmans T (1934) Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica 1:104–113

    Article  Google Scholar 

  59. Pati PB, Senanayak SP, Narayan KS, Zade SS (2013) Solution processable benzooxadiazole and benzothiadiazole based D-A-D molecules with chalcogenophene: field effect transistor study and structure property relationship. ACS Appl Mater Interfaces 5:12460–12468

    Article  CAS  PubMed  Google Scholar 

  60. Murray JS, Sen K (1996) Molecular electrostatic potentials: concepts and applications. Elsevier, Amsterdam

    Google Scholar 

  61. Chaudhry AR, Ahmed R, Irfan A, Shaari A, Al-Sehemi AG (2014) Effects of electron withdrawing groups on transfer integrals, mobility, electronic and photophysical properties of naphtho[2,1-b:6,5-b′]difuran derivatives: a theoretical study. Sci Adv Mater 6:1–13

    Article  Google Scholar 

  62. Zhao C, Wang W, Ma Y (2013) Molecular design toward good hole transport materials based on anthra [2,3-c] thiophene: a theoretical investigation. Comput Theor Chem 1010:25–31

    Article  CAS  Google Scholar 

  63. Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) Stacked Pentacene layer organic thin-film transistors with improved characteristics. IEEE electron device letters 18:606–608

    Article  CAS  Google Scholar 

  64. Horowitz G, Lang P, Mottaghi M, Aubin H (2004) Extracting parameters from the current-voltage characteristics of organic field effect transistors. Adv Func Mater 14:1069–1074

    Article  CAS  Google Scholar 

  65. Lukes V, Cagardova D, Michalik M, Poliak P (2018) Density-functional theoretical study of fluorination effect on the electronic structure and electron drift mobilities of symmetric pentacene derivatives. Synth Met 240:67–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sagar Sharma would like to thank the Department of Science and Technology, Govt. of India for the INSPIRE faculty grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Sharma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

In the supporting information, additional data including (a) the optimized geometries (b) geometrical parameters (c) the frontier molecular orbitals, (d) density of states plot, and (e) electrostatic potential isosurface plot of the compounds have been provided.

ESM 1

(DOCX 3692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, G., Sahoo, S.R., Rajbongshi, B.K. et al. New types of organic semiconductors based on diketopyrrolopyrroles and 2,1,3-benzochalcogenadiazoles: a computational study. J Mol Model 25, 42 (2019). https://doi.org/10.1007/s00894-019-3922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3922-x

Keywords

Navigation