Skip to main content

Advertisement

Log in

Influence of electric fields on the efficiency of multilayer graphene membrane

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Multilayer graphene membranes could be considered as an efficient membrane in water desalination processes based on the reverse osmosis (RO) method. In this study, we designed multilayer graphene channels using the molecular dynamics (MD) simulation approach. The effects of different parameters, such as channel width and length, and the pressure on the operation of the designed channels were examined, in the absence and presence of electric fields with various amplitudes and directions. The results indicated that the ion separation and water flow through the channels were modified under the application of the electric fields. Additionally, it has been shown that salt rejection and water flow could be controlled by the channel’s structural parameters mentioned above. The obtained results of this study at the molecular level can improve the knowledge of designing membranes for water purification processes.

Using MD method a multilayer graphene membrane was designed to separate Na+ and Cl ions from a NaCl solution by the aid of external electric field, which can significantly effect the membrane operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Konatham D, Yu J, Ho TA, Striolo A (2013) Simulation insights for graphene-based water desalination membranes. Langmuir 29:11884–11897

    Article  CAS  PubMed  Google Scholar 

  2. Cohen-Tanugi D, McGovern RK, Dave SH, Lienhard JH, Grossman JC (2014) Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ Sci 7:1134–1141

    Article  CAS  Google Scholar 

  3. Rikhtehgaran S, Lohrasebi A (2015) Water desalination by a designed nanofilter of graphene-charged carbon nanotube: a molecular dynamics study. Desalination 365:176–181

    Article  CAS  Google Scholar 

  4. Homaeigohar S, Elbahri M (2017) Graphene membranes for water desalination. NPG Asia Mater 9:e427. https://doi.org/10.1038/am.2017.135

    Article  CAS  Google Scholar 

  5. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608

    Article  CAS  PubMed  Google Scholar 

  6. Sun P, Wang K, Zhu H (2016) Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv Mater 28:2287–2310

    Article  CAS  PubMed  Google Scholar 

  7. Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT, Dix J, Prestat E, Haigh SJ, Grigorieva IV (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12:546–550

    Article  CAS  PubMed  Google Scholar 

  8. Lohrasebi A, Rikhtehgaran S (2018) Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res 11(4):2229–2236

    Article  CAS  Google Scholar 

  9. Wang EN, Karnik R (2012) Water desalination: graphene cleans up water. Nat Nanotechnol 7:552

    Article  CAS  PubMed  Google Scholar 

  10. O’Hern SC, Stewart CA, Boutilier MS, Idrobo JC, Bhaviripudi S, Das SK, Kong J, Laoui T, Atieh M, Karnik R (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6:10130–10138

    Article  CAS  PubMed  Google Scholar 

  11. Nicolaï A, Sumpter BG, Meunier V (2014) Tunable water desalination across graphene oxide framework membranes. Phys Chem Chem Phys 16:8646–8654

    Article  CAS  PubMed  Google Scholar 

  12. An D, Yang L, Wang TJ, Liu B (2016) Separation performance of graphene oxide membrane in aqueous solution. Ind Eng Chem Res 55:4803–4810

    Article  CAS  Google Scholar 

  13. Cohen-Tanugi D, Lin LC, Grossman JC (2016) Multilayer nanoporous graphene membranes for water desalination. Nano Lett 16:1027–1033

    Article  CAS  PubMed  Google Scholar 

  14. Cohen-Tanugi D, Grossman JC (2015) Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination 366:59–70

    Article  CAS  Google Scholar 

  15. Kumar Kannam S, Todd B, Hansen JS, Daivis PJ (2012) Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. J Chem Phys 136:024705

    Article  CAS  Google Scholar 

  16. Dahanayaka M, Liu B, Hu Z, Pei QX, Chen Z, Law AWK, Zhou K (2017) Graphene membranes with nanoslits for seawater desalination via forward osmosis. Phys Chem Chem Phys 19:30551–30561

    Article  CAS  PubMed  Google Scholar 

  17. Wu S, Yang R, Shi D, Zhang G (2012) Identification of structural defects in graphitic materials by gas-phase anisotropic etching. Nanoscale 4:2005–2009

    Article  CAS  PubMed  Google Scholar 

  18. O’Hern SC, Jang D, Bose S, Idrobo JC, Song Y, Laoui T, Kong J, Karnik R (2015) Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett 15:3254–3260

    Article  CAS  PubMed  Google Scholar 

  19. Perreault F, De Faria AF, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K (2016) Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Appl Mater Interfaces 8:6211–6218

    Article  CAS  PubMed  Google Scholar 

  21. Cheng C, Jiang G, Garvey CJ, Wang Y, Simon GP, Liu JZ, Li D (2016) Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci Adv 2:e1501272

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hong S, Constans C, Surmani Martins MV, Seow YC, Guevara Carrió JA, Garaj S (2017) Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett 17:728–732

    Article  CAS  PubMed  Google Scholar 

  23. Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z (2017) Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550:380

    Article  CAS  PubMed  Google Scholar 

  24. Bateni A, Susnar S, Amirfazli A, Neumann A (2004) Development of a new methodology to study drop shape and surface tension in electric fields. Langmuir 20:7589–7597

    Article  CAS  PubMed  Google Scholar 

  25. Sint K, Wang B, Král P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130:16448–16449

    Article  CAS  PubMed  Google Scholar 

  26. Liu J, Wang M, Chen S, Robbins MO (2012) Uncovering molecular mechanisms of electrowetting and saturation with simulations. Phys Rev Lett 108:216101

    Article  CAS  PubMed  Google Scholar 

  27. Song F, Li B, Liu C (2013) Molecular dynamics simulation of nanosized water droplet spreading in an electric field. Langmuir 29:4266–4274

    Article  CAS  PubMed  Google Scholar 

  28. Corson LT, Tsakonas C, Duffy BR, Mottram NJ, Sage IC, Brown CV, Wilson SK (2014) Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment. Phys Fluids 26:122106

    Article  CAS  Google Scholar 

  29. Zhu J, Lan Y, Du H, Zhang Y, Su J (2016) Tuning water transport through nanochannels by changing the direction of an external electric field. Phys Chem Chem Phys 18:17991–17996

    Article  CAS  PubMed  Google Scholar 

  30. Kargar M, Lohrasebi A (2017) Deformation of water nano-droplets on graphene under the influence of constant and alternative electric fields. Phys Chem Chem Phys 19:26833–26838

    Article  CAS  PubMed  Google Scholar 

  31. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  32. Allen M, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  33. Conway BE (1981) Ionic hydration in chemistry and biophysics. Elsevier, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lohrasebi.

Electronic supplementary material

ESM 1

(AVI 29166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kargar, M., Khashei Varnamkhasti, F. & Lohrasebi, A. Influence of electric fields on the efficiency of multilayer graphene membrane. J Mol Model 24, 241 (2018). https://doi.org/10.1007/s00894-018-3774-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3774-9

Keywords

Navigation