Skip to main content
Log in

Electrical tree inhibition by SiO2/XLPE nanocomposites: insights from first-principles calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

It has been extensively observed in experiments that nanoparticle additives can efficiently inhibit the electrical tree growth of the cross-linked polyethylene (XLPE) matrix of power cables. Inspired by this, the first-principles calculations employing the density functional theory (DFT) method were performed in this study to investigate the significant role of SiO2 nanosized fillers as a voltage stabilizer for power cable insulation. Several different types of α-SiO2 fillers, including hydroxylated, reconstructed, doped or oxygen vacancy surface structures, were constructed to model the interfacial interaction for SiO2/XLPE nanocomposites. It is found that the SiO2 additives can restrict the movement of the polyethylene chain through van der Waals physical interaction. More importantly, based on the Bader charge analysis we reveal that SiO2 could effectively capture hot electrons to suppress space charge accumulation in XLPE. However, some particular modified-surface SiO2, such as incompletely hydroxylated, B-doped, and oxygen vacancy defect on the top layer, could induce the H migration reaction and consequent electrical tree growth of the XLPE chain. In contrast, the SiO2 particles that have N-doped or oxygen vacancy on the lower layer with completely hydroxylated surfaces, as well as the reconstructed surface, are predicted to be favorable additives because of their quite strong physical interaction and very weak chemical activity with XLPE. The present study is useful to understand the mechanism of the nanosized voltage stabilizer and also provide important information for further experimental investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Munteanu D (1997) Moisture cross-linkable silane-modified polyolefins. In: Al-Malaika S (ed) Reactive modifiers for polymers. Springer, Dordrecht, pp 196–265

    Chapter  Google Scholar 

  2. Ramachandran S, Hartlein R, Chandak P (1999) A comparative economic analysis for underground distribution cables insulated with TR-XLPE and EPR. In: IEEE/PES transmission and distribution conference, 11–16 Apr 1999, pp 112–119

  3. Pollet P, Liotta CL, Eckert CA, Verma M, Nixon E, Sivaswamy S, Jha R, Momin F, Gelbaum L, Chaudhary BI (2011) Radical-mediated graft modification of polyethylene models with Vinyltrimethoxysilane: a fundamental study. Ind Eng Chem Res 50:12246–12253

    Article  CAS  Google Scholar 

  4. Mizutani T, Hikita M, Umemura A, Ieda M (1989) Electrical breakdown and space charge of polyphenylene sulfide films. In: Conference on electrical insulation and dielectric phenomena, 29 Oct −01 Nov 1989, pp 315–320

  5. Jarvid M, Johansson A, Englund V, Gubanski S (2012) Electrical tree inhibition by voltage stabilizers. In: IEEE conference on electrical insulation and dielectric phenomena, 14–17 Oct 2012, pp 605–608

  6. Yin Y, Tu D, Du Q, Gong Z (2000) Distribution and effect of space charge on dielectric properties in modified XLPE by chlorinated polyethylene. In: 6th international conference on properties and applications of dielectric materials, 21–26 Jun 2000, pp 268–271

  7. Bradwell A, Cooper R, Varlow B (1971) Conduction in polythene with strong electric fields and the effect of prestressing on the electric strength. Proc IEE 118(1):247–254

    Google Scholar 

  8. Du BX, Su JG, Han T (2015) Effects of magnetic field on electrical tree growth in silicone rubber under repetitive pulse voltage. IEEE Trans Dielectr Electr Insul 22(4):1785–1792

    Article  CAS  Google Scholar 

  9. Werelius P, Tharning P, Eriksson R, Holmgren B (2001) Dielectric spectroscopy for diagnosis of water tree deterioration in XLPE cables. IEEE Trans Dielectr Electr Insul 8(1):27–42

    Article  CAS  Google Scholar 

  10. Crine JP (1998) Electrical, chemical and mechanical processes in water treeing. IEEE Trans Dielectr Electr Insul 5(5):681–694

    Article  CAS  Google Scholar 

  11. Englund V, Huuva R, Gubanski SM, Hjertberg T (2009) Synthesis and efficiency of voltage stabilizers for XLPE cable insulation. IEEE Trans Dielectr Electr Insul 16(5):1455–1461

    Article  CAS  Google Scholar 

  12. Kisin S, Doelder JD, Eaton RF, Caronia PJ (2009) Quantum mechanical criteria for choosing appropriate voltage stabilization additives for polyethylene. Polym Degrad Stab 94(2):171–175

    Article  CAS  Google Scholar 

  13. Suh KS, Sun Jun H, Lee CR (1997) Charge behavior in polyethylene-ionomer blends. IEEE Trans Dielectr Electr Insul 4(1):58–63

    Article  CAS  Google Scholar 

  14. Yin Y, Du Q, Gong Z (2000) Influence of blending chlorinated polyethylene on the space charge effect in polyethylene. Trans China Electrotech Soc 15(2):52–57

    Google Scholar 

  15. Pleşa I, Noţingher PV, Schlögl S, Sumereder C, Muhr M (2016) Properties of polymer composites used in high-voltage applications. Polymers 8(5):173–176

    Article  CAS  Google Scholar 

  16. Ieda M, Nagao M, Hikita M (1994) High-field conduction and breakdown in insulating polymers. Present situation and future prospects. IEEE Trans Dielectr Electr Insul 1(5):934–945

    Article  CAS  Google Scholar 

  17. Vaughan AS, Hosier IL, Dodd SJ, Sutton SJ (2006) On the structure and chemistry of electrical trees in polyethylene. J Phys D Appl Phys 39(5):962–978

    Article  CAS  Google Scholar 

  18. Chen X, Xu Y, Cao X, Dodd SJ, Dissado LA (2011) Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples. IEEE Trans Dielectr Electr Insul 18(3):847–860

    Article  CAS  Google Scholar 

  19. Kurnianto R, Murakami Y, Hozumi N, Nagao M (2007) Characterization of tree growth in filled epoxy resin: the effect of filler and moisture contents. IEEE Trans Dielectr Electr Insul 14(2):427–435

    Article  CAS  Google Scholar 

  20. Iizuka T, Tanaka T (2009) Effects of nano silica filler size on treeing breakdown lifetime of epoxy nanocomposites. In: 9th international conference on properties and applications of dielectric materials, 19–23 Jun 2009, pp 733–736

  21. Tanaka T, Iizuka T, Sekiguchi Y, Murata Y (2009) Tree initiation and growth in LDPE/MgO nanocomposites and roles of nano fillers. In: Annual report conference on electrical insulation and dielectric phenomena, 18–21 Oct 2009, pp 646–649

  22. Tanaka T, Bulinski A, Castellon J, Frechette M, Gubanski S, Kindersberger J, Montanari GC, Nagao M, Morshuis P, Tanaka Y, Pelissou S, Vaughan A, Ohki Y, Reed CW, Sutton S, Han SJ (2011) Dielectric properties of XLPE/SiO2 nanocomposites based on CIGRE WG D1.24 cooperative test results. IEEE Trans Dielectr Electr Insul 18(5):1482–1517

    Article  Google Scholar 

  23. Zhang L, Zhou Y, Huang M, Sha Y, Tian J, Ye Q (2014) Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 21(2):424–433

    Article  CAS  Google Scholar 

  24. Li Z, Okamoto K, Ohki Y, Tanaka T (2011) The role of nano and micro particles on partial discharge and breakdown strength in epoxy composites. IEEE Trans Dielectr Electr Insul 18(3):675–681

    Article  CAS  Google Scholar 

  25. Ding HZ, Varlow BR (2004) Effect of nano-fillers on electrical treeing in epoxy resin subjected to AC voltage. In: Annual conference on electrical insulation and dielectric phenomena (CEIDP), 17–20 Oct 2004, pp 332–335

  26. Wang Y, Wang C, Xiao K (2016) Investigation of the electrical properties of XLPE/SiC nanocomposites. Polym. Test. 50:145–151

    Article  CAS  Google Scholar 

  27. Wang Y, Xiao K, Wang C, Yang L, Wang F (2016) Study on dielectric properties of TiO2/XLPE nanocomposites. In: IEEE international conference on high voltage engineering and application (ICHVE), 19–22 Sept 2016, pp 1–4

  28. Han B, Jiao M, Li C, Zhang C, Wu Z, Wang Y, Zhang H (2015) QM/MD simulations on the role of SiO2 in polymeric insulation materials. RSC Adv 6(1):555–562

    Article  CAS  Google Scholar 

  29. Song S, Zhao H, Zheng X, Zhang H, Liu Y, Wang Y, Han B (2018) A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation. R Soc Open Sci 5(2):170772

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hickel PE, Lafon F, Fortis F, Cambon O, Demazeau G (1997) On the development of new solvents for the high pressure crystal growth of α-quartz. Ann Chim-Sci Mat 22(8):571–576

    CAS  Google Scholar 

  31. Hickel PE, Lafon F, Chvansky PP, Largeteau A, Demazeau G (1997) Influence of the different physico-chemical parameters governing the crystal growth of α-quartz on the concentration of chemical defects. Ann Chim-Sci Mater 22(8):583–588

    CAS  Google Scholar 

  32. Balascio JF, Lind T (1997) The growth of piezoelectric alpha quartz crystals. Curr Opin Solid State Mater Sci 2(5):588–592

    Article  CAS  Google Scholar 

  33. de Leeuw NH, Higgins FM, Parker SC (1999) Modeling the surface structure and stability of α-quartz. J Phys Chem B 103(8):1270–1277

    Article  Google Scholar 

  34. Wegener J, Janshoff A, Steinem C (2001) The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ. Cell Biochem Biophys 34(1):121–151

    Article  CAS  PubMed  Google Scholar 

  35. Du B, Johannsmann D (2004) Operation of the quartz crystal microbalance in liquids: derivation of the elastic compliance of a film from the ratio of bandwidth shift and frequency shift. Langmuir 20(7):2809–2812

    Article  CAS  PubMed  Google Scholar 

  36. Ayad MM, Zaki EA, Stejskal J (2007) Determination of the dopant weight fraction in polyaniline films using a quartz-crystal microbalance. Thin Solid Films 515(23):8381–8385

    Article  CAS  Google Scholar 

  37. Goumans TPM, Wander A, Brown WA, Catlow CRA (2007) Structure and stability of the (001) alpha-quartz surface. Phys Chem Chem Phys 9(17):2146–2152

    Article  CAS  PubMed  Google Scholar 

  38. Han JW, James JN, Sholl DS (2008) First principles calculations of methylamine and methanol adsorption on hydroxylated quartz (0001). Surf Sci 602(14):2478–2485

    Article  CAS  Google Scholar 

  39. Rignanese GM, De Vita A, Charlier JC, Gonze X, Car R (2000) First-principles molecular-dynamics study of the (0001) α−quartz surface. Phys Rev B 61(19):13250–13255

    Article  CAS  Google Scholar 

  40. Chen Y-W, Cao C, Cheng H-P (2008) Finding stable α-quartz (0001) surface s tructures via simulations. Appl Phys Lett 93(18):181911

    Article  CAS  Google Scholar 

  41. Jánossy I, Menyhárd M (1971) LEED study of quartz crystals. Surf Sci 25(3):647–649

    Article  Google Scholar 

  42. Bart F, Gautier M (1994) A LEED study of the (0001) a-quartz surface reconstruction. Surf. Sci. 311(1–2):L671–L676

    Article  CAS  Google Scholar 

  43. Koudriachova MV, Beckers JVL, de Leeuw SW (2001) Computer simulation of the quartz surface: a combined ab initio and empirical potential approach. Comput Mater Sci 20(3):381–386

    Article  CAS  Google Scholar 

  44. Del Rosal I, Gerber IC, Poteau R, Maron L (2015) Grafting of lanthanide complexes on silica surfaces dehydroxylated at 200 °C: a theoretical investigation. New J Chem 39(10):7703–7715

    Article  CAS  Google Scholar 

  45. Skuja L, Kajihara K, Hirano M, Hosono H (2012) Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials. Nucl Instrum Methods Phys Res B 286:159–168

    Article  CAS  Google Scholar 

  46. Nicklaw CJ, Pagey MP, Pantelides ST, Fleetwood DM, Schrimpf RD, Galloway KF, Wittig JE, Howard BM, Taw E, McNeil WH, Conley JF (2000) Defects and nanocrystals generated by Si implantation into a-SiO2. IEEE Trans Nucl Sci 47(6):2269–2275

    Article  CAS  Google Scholar 

  47. Chandrasekhar PS, Komarala VK (2015) Effect of graphene and au@SiO2 core-shell nano-composite on photoelectrochemical performance of dye-sensitized solar cells based on N-doped titania nanotubes. RSC Adv 5(103):84423–84431

    Article  CAS  Google Scholar 

  48. Zhao X, He XD, Zhang S, Wang LD, Li MW, Li YB (2011) Investigations on B-doped SiO2 thermal protective coatings by hybrid sol–gel method. Thin Solid Films 519(15):4849–4854

    Article  CAS  Google Scholar 

  49. Zhang SS, Zhao ZY, Yang PZ (2015) Analysis of electronic structure and optical properties of N-doped SiO2 based on DFT calculations. Mod Phys Lett B 29(19):1550100

    Article  CAS  Google Scholar 

  50. Pacchioni G, Vezzoli M, Fanciulli M (2001) Electronic structure of the paramagnetic boron oxygen hole center in B-doped SiO2. Phys Rev B 64(15):155201

    Article  CAS  Google Scholar 

  51. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  52. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561

    Article  CAS  Google Scholar 

  53. Kresse G, Hafner J (1994) Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J Phys Condens Matter 6(40):8245–8257

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  PubMed  Google Scholar 

  55. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49(23):16223–16233

    Article  Google Scholar 

  56. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    Article  CAS  Google Scholar 

  57. Bader RFW (1994) Atoms in molecules: a quantum theory. THEOCHEM J Mol Struct 360(1–3):175

    Google Scholar 

  58. Pan D, Liu L-M, Tribello GA, Slater B, Michaelides A, Wang E (2008) Surface energy and surface proton order of ice Ih. Phys Rev Lett 101(15):155703

    Article  CAS  PubMed  Google Scholar 

  59. Henkelman G (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(113):9978–9985

    Article  CAS  Google Scholar 

  60. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  CAS  Google Scholar 

  61. Liu Q, Poumellec B, Blum R, Girard G (2006) Stability of electron-beam poling in N or Ge-doped H:SiO2 films. Appl Phys Lett 88(24):693

    Google Scholar 

  62. Weidner DJ (1980) Structure and elastic properties of quartz at pressure. Am Mineral 65(2):920–930

    Google Scholar 

  63. Malyi OI, Kulish VV, Persson C (2014) In search of new reconstructions of (001) α-quartz surface: a first principles study. RSC Adv 4(98):55599–55603

    Article  CAS  Google Scholar 

  64. Pacchioni G (2000) Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity. Solid State Sci 2(2):161–179

    Article  Google Scholar 

  65. Raghavachari K, Ricci D, Pacchioni G (2002) Optical properties of point defects in SiO2 from time-dependent density functional theory. J Chem Phys 116(2):825–831

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21203041), Natural Science Foundation of Heilongjiang province in China (Grant No. B2016004), the Fundamental Research Funds for the Central Universities in China (Grant No. HIT. NSRIF. 2017033), and the open project of Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education, (Grand No. KF20151105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Electronic supplementary material

ESM 1

(DOCX 3145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Liu, Y. & Wang, Y. Electrical tree inhibition by SiO2/XLPE nanocomposites: insights from first-principles calculations. J Mol Model 24, 200 (2018). https://doi.org/10.1007/s00894-018-3742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3742-4

Keywords

Navigation