Skip to main content
Log in

Hydration of counterions interacting with DNA double helix: a molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present work, molecular dynamics simulations have been carried out to study the dependence of counterion distribution around the DNA double helix on the character of ion hydration. The simulated systems consisted of DNA fragment d(CGCGAATTCGCG) in water solution with the counterions Na+, K+, Cs+ or Mg2+. The characteristic binding sites of the counterions with DNA and the changes in their hydration shell have been determined. The results show that due to the interaction with DNA at least two hydration shells of the counterions undergo changes. The first hydration shell of Na+, K+, Cs+, and Mg2+ counterions in the bulk consists of six, seven, ten, and six water molecules, respectively, while the second one has several times higher values. The Mg2+ and Na+ counterions, constraining water molecules of the first hydration shell, mostly form with DNA water-mediated contacts. In this case the coordination numbers of the first hydration shell do not change, while the coordination numbers of the second one decrease about twofold. The Cs+ and K+ counterions that do not constrain surrounding water molecules may be easily dehydrated, and when interacting with DNA their first hydration shell may be decreased by three and five water molecules, respectively. Due to the dehydration effect, these counterions can squeeze through the hydration shell of DNA to the bottom of the double helix grooves. The character of ion hydration establishes the correlation between the coordination numbers of the first and the second hydration shells.

Hydration of counterions interacting with DNA double helix

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  2. Blagoi YP et al (1991) Complexes of nucleic acids and metals in the solutions. Naukova Dumka, Kiev

    Google Scholar 

  3. Maleev VYA, Semenov MA, Gassan MA, Kashpur VA (1993) Physical properties of DNA-water system. Biofizika 38:768–790

    CAS  PubMed  Google Scholar 

  4. Mocci F, Laaksonen A (2012) Insights into nucleic acid counterion interactions from inside molecular dynamics simulation is “worth its salt”. Soft Matter 8:9268–9284

  5. Korolev N, Allahverdi A, Lubartsev A, Nordenskiӧld L (2012) The polyelectrolyte properties of chromatin. Soft Matter 8:9322–9333

    Article  CAS  Google Scholar 

  6. Allahverdi A, Chen Q, Korolev N, Nordenskiӧld L (2015) Chromatin compaction under mixed salt conditions: opposite effects of sodium and potassium ions on nucleosome array folding. Sci Rep 5:8512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pasi M, Maddocks JH, Lavery R (2015) Analyzing ion distribution around DNA: sequence-dependence of potassium ion distribution from microsecond molecular dynamics. Nucleic Acids Res 43:2412–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lavery R, Maddocks JH, Pasi M, Zakrzewska K (2014) Analyzing ion distribution around DNA. Nucleic Acids Res 42:8138–8149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pasi M, Maddocks JH, Beveridge D, Bishop TC, Case DA, Cheatham III T, Dans PD, Jayaram B, Lankas F, Laughton C, Mitchell J, Osman R, Orozco M, Perez A, Petkeviciute D, Spackova N, Sponer J, Zakrzewska K, Lavery R (2014) μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Res 42:12272–12283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dans PD, Danilane L, Ivani I, Drsata T, Lankas F, Hospital A, Walther J, Pujagut RI, Battistini F, Gelpi JL, Lavery R, Orozco M (2016) Long-timescale dynamics of the Drew-Dickerson dodecamer. Nucleic Acids Res 44:4052–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Atzori A, Liggi S, Laaksonen A, Porcu M, Lyubartsev AP, Saba G, Mocci F (2016) Base sequence specificity of counterion binding to DNA: what can MD simulations tell us? Can J Chem 94(12):1181–1188

    Article  CAS  Google Scholar 

  12. Weidlich T, Lindsay SM, Rupprecht A (1987) The optical properties of li- and Na-DNA films. Biopolymers 26:439–453

    Article  CAS  PubMed  Google Scholar 

  13. Lavalle N, Lee SA, Rupprecht A (1990) Counterion effects on the physical properties and A to B transition of calf-thymus DNA films. Biopolymers 30:877–887

    Article  CAS  PubMed  Google Scholar 

  14. Adams PJ, VanSteenberg ML, Lee SA, Rupprecht A (1994) Optical properties of CsDNA films as a function of hydration. J Biomol Struct Dyn 11:1277–1286

    Article  CAS  PubMed  Google Scholar 

  15. Drew HR, Wing RM, Takano T, Broka C, Takana S, Itakura K, Dickerson RE (1981) Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci U S A 78:2179–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Denisov VP, Caristorm G, Venu K, Halle B (1997) Kinetics of DNA hydration. J Mol Biol 268(1):118–136

    Article  CAS  PubMed  Google Scholar 

  17. Duboué-Dijon E, Fogarty AC, Hynes JT, Laage D (2016) Dynamical disorder in the DNA hydration shell. J Am Chem Soc 138(24):7610–7620

    Article  CAS  PubMed  Google Scholar 

  18. Saha D, Supekar S, Mukherjee A (2015) Distribution of residence time of water around DNA Base pairs: governing factors and the origin of heterogeneity. J Phys Chem B 119:11371–11381

    Article  CAS  PubMed  Google Scholar 

  19. Floisand DJ, Corcelli SA (2015) Computational study of phosphate vibrations as reporters of DNA hydration. J Phys Chem Lett 6:4012–4017

    Article  CAS  PubMed  Google Scholar 

  20. Heyden M, Tobias DJ (2013) Spatial dependence of protein-water collective hydrogen-bond dynamics. Phys Rev Lett 111:218101

    Article  CAS  PubMed  Google Scholar 

  21. Skuratovskii IYA, Volkova LI, Kapitonova KA, Bartenev VN (1979) Position of the heavy ion in the structure of crystallographic B-DNA. Biofizika 24:750–752

    CAS  PubMed  Google Scholar 

  22. Bartenev VN, Golovamov EUI, Kapitonova KA, Volkova LI, Skuratovskii IYA (1983) Structure of the B-DNA cationic shell as revealed by an X-ray diffraction study of CsDNA. Sequence-specific cationic stabilization of B form DNA. J Mol Biol 169:217–234

    Article  CAS  PubMed  Google Scholar 

  23. Tereshko V, Minasov G, Egli M (1999) A “hydration-spine” in a B-DNA minor groove. J Am Chem Soc 121:3590–3595

    Article  CAS  Google Scholar 

  24. Woods KK, McFail-Isom L, Sines CC, Howerton SB, Stephens RK, Williams LD (2000) Monovalent cations sequester withing the A-tract minor groove of [d(CGCGAATTCGCG)]2. J Am Chem Soc 122:1546–1547

    Article  CAS  Google Scholar 

  25. Tereshko V, Wilds CJ, Minasov G, Prakash TP, Maier MA, Howard A, Wawrzak Z, Manoharan M, Egli M (2001) Detection of alkali metal ions in DNA crystals using state-of-the art X-ray diffraction experiment. Nucleic Acids Res 29:1208–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Das R, Mills TT, Kwok LW, Maskel GS, Millett IS, Doniach S, Finkelstein KD, Herschlag D, Pollack L (2003) Counterion distribution around DNA probed by solution X-ray scattering. Phys Rev Lett 90:188103

    Article  CAS  PubMed  Google Scholar 

  27. Andersen K, Das R, Park HY, Smith H, Kwok LW, Lamb JS, Kirkland EJ, Herschlag D, Finkelstein KD, Pollack L (2004) Spatial distribution of competing ions around DNA in solution. Phys Rev Lett 93:248103

    Article  CAS  Google Scholar 

  28. Andresen K, Qiu X, Pabit SA, Lamb JS, Park HY, Kwok LW, Pollack L (2008) Mono- and trivalent ions around DNA: a small-angle scattering study of competition and interactions. Biophys J 95:287–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiu X, Andersen K, Lamb JS, Kwok LW, Pollack L (2008) Abrupt transition from a free, repulsive to a condensed, attractive DNA phase, induced by multivalent polyamine cations. Phys Rev Lett 101:228101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kirmizialtin S, Pabit SA, Meisburger SP, Pollack L, Elber R (2012) RNA and its ionic cloud: solution scattering experiments and atomically detailed simulations. Biophys J 102:819–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11:179–246

    Article  CAS  PubMed  Google Scholar 

  32. Frank-Kamenetskii MD, Anshelevich VV, Lukashin AV (1987) Polyelectrolite model of DNA. Sov Phys Usp 151:595–618

    Article  CAS  Google Scholar 

  33. Young MA, Jayaram B, Beveridge DL (1997) Intrasion of counterions into the spine of hydration in the minor groove of B-DNA: fractional occupancy of electronegative pockets. J Am Chem Soc 119:59–69

    Article  CAS  Google Scholar 

  34. Young MA, Ravishanker G, Beveridge DL (1997) A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and salvation. Biophys J 73:2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lyubartsev AP, Laaksonen A (1998) Molecular dynamics simulation of DNA in solution with different counter-ions. J Biomol Struct Dyn 16:579–592

    Article  CAS  PubMed  Google Scholar 

  36. McFail-Isom L, Sines CC, Williams LD (1999) DNA structure: cations in charge? Curr Opin Struct Biol 9:298–304

    Article  CAS  PubMed  Google Scholar 

  37. Korolev N, Lyubartsev AP, Rupprecht A, Nordenskiold L (1999) Competitive binding of Mg2+, Ca2+, Na+, and K+ ions to DNA in oriented fibers: experimental and Monte Carlo simulation results. Biophys J 77:2736–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feig M, Pettitt M (1999) Sodium and chlorine ions as the part DNA salvation shell. Biophys J 77:1769–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McConnel KJ, Beveridge DL (2000) DNA structure: what’s in charge? J Mol Biol 304:803–820

    Article  CAS  Google Scholar 

  40. Ponomarev SY, Thayer KM, Beveridge DL (2004) Ion motions in molecular dynamics simulations on DNA. Proc Natl Acad Sci U S A 101:14771–14775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Varnai P, Zakrzewska K (2004) DNA and its counterions: a molecular dynamics study. Nucleic Acids Res 32:4269–4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perez A, Luque J, Orozco M (2007) Dynamics of B-DNA on the microsecond time scale. J Am Chem Soc 129:14739–14745

    Article  CAS  PubMed  Google Scholar 

  43. Shen X, Gu B, Che SA, Zhang FS (2011) Solvent effects on the conformation of DNA dodecame segment: a simulation study. J Chem Phys 135:034509

    Article  CAS  PubMed  Google Scholar 

  44. Shen X, Atamas NA, Zhang FS (2012) Competition between Na+ and Rb+ in the minor groove of DNA. Phys Rev E 85:051913

    Article  CAS  Google Scholar 

  45. Liubysh OO, Vlasiuk AO, Perepelytsya SM (2015) Structuring of counterions around DNA double helix: a molecular dynamics study. Ukr J Phys 60:433–442

    Article  Google Scholar 

  46. Ismailov NA (1976) Electrochemistry of solutions. Chemistry, Moscow

  47. Smirnov PR, Trostin VN (2007) Structures of the nearest surroundings of the K+, Rb+, and Cs+ ions in aqueous solutions of their salts. Russ J Gen Chem 77(12):2101–2107

    Article  CAS  Google Scholar 

  48. Mähler J, Persson I (2011) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51:425–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li W, Nordenskiӧld L, Mu Y (2011) Sequence-specific Mg2+-DNA interactions: a molecular dynamics study. J Phys Chem B 115:14713–14720

    Article  CAS  PubMed  Google Scholar 

  50. Cunha RA, Bussi G (2017) Unraveling Mg2+-RNA binding with atomic molecular dynamics. RNA 23(5):1–12

    Article  CAS  Google Scholar 

  51. Perepelytsya SM, Volkov SN (2004) Ion mode in the DNA low-frequency vibration spectra. Ukr J Phys 49:1072–1077

    CAS  Google Scholar 

  52. Perepelytsya SM, Volkov SN (2007) Counterion vibrations in the DNA low-frequency spectra. Eur Phys J E 24:261–269

    Article  CAS  PubMed  Google Scholar 

  53. Perepelytsya SM, Volkov SN (2010) Intensities of DNA ion-phosphate modes in low-frequency Raman spectra. Eur Phys J E 31:201–205

    Article  CAS  PubMed  Google Scholar 

  54. Perepelytsya SM, Volkov SN (2011) Conformational vibrations of ionic lattice in DNA: manifestation in the low-frequency Raman spectra. J Mol Liq 164:113–119

    Article  CAS  Google Scholar 

  55. Perepelytsya SM, Volkov SN (2013) Dynamics of ion-phosphate lattice of DNA in left-handed the double helix form. Ukr J Phys 58:554–561

    Article  CAS  Google Scholar 

  56. Perepelytsya SM, Volkov SN (2013) Vibrations of ordered counterions around left- and right-handed DNA double helix. J Phys Conf Ser 438:012013

    Article  CAS  Google Scholar 

  57. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Foloppe N, MacKerell Jr AD (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21:86–104

    Article  CAS  Google Scholar 

  59. MacKerell Jr AD, Banavali N (2000) All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J Comput Chem 21:105–120

    Article  CAS  Google Scholar 

  60. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liguids. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  61. Beglov D, Roux B (1994) Finite representation of an infinite bulk system: solvent boundary potential for computer simulations. J Chem Phys 100:9050–9063

    Article  CAS  Google Scholar 

  62. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 32:327–341

  63. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  64. Humphrey W, Dalke A, Schulten K (1996) VMD - visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  65. Levine BG, Stone JE, Kolhmeyer A (2011) Fast analysis of molecular dynamics trajectories with graphics processing units – radial distribution function hystogramming. J Comput Phys 230:3556–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Minasov G, Tereshko V, Egli M (1999) Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. J Mol Biol 291:83–99

    Article  CAS  PubMed  Google Scholar 

  67. Ahmad R, Arakawa H, Tajmir-Riahi HA (2003) A comparative study of DNA complexation with Mg(II) and Ca(II) in aqueous solution: major and minor grooves bindings. Biophys J 84:2460–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author acknowledges the BITP and the HT-CONDOR grid system for providing the computational facilities. The author also thanks Prof. S.N. Volkov and colleagues from the Laboratory of Biophysics of Macromolecules of the BITP for the discussion of the results; Dr. Leonid Belous for support of computational process on HT-CONDOR cluster. The support from GRID Program of the National Academy of Sciences of Ukraine (project 0117 U003429) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Perepelytsya.

Electronic supplementary material

ESM 1

(PDF 2775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perepelytsya, S. Hydration of counterions interacting with DNA double helix: a molecular dynamics study. J Mol Model 24, 171 (2018). https://doi.org/10.1007/s00894-018-3704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3704-x

Keywords

Navigation