Skip to main content
Log in

Theoretical descriptions of novel triplet germylenes M1-Ge-M2-M3 (M1 = H, Li, Na, K; M2 = Be, Mg, Ca; M3 = H, F, Cl, Br)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In a quest to identify new ground-state triplet germylenes, the stabilities (singlet–triplet energy differences, ΔES–T) of 96 singlet (s) and triplet (t) M1-Ge-M2-M3 species were compared and contrasted at the B3LYP/6–311++G**, QCISD(T)/6–311++G**, and CCSD(T)/6–311++G** levels of theory (M1 = H, Li, Na, K; M2 = Be, Mg, Ca; M3 = H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M3 = F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M3 = Cl or Br). Triplets with M1 = K (i.e., the K-Ge-M2-M3 series) seem to be more stable than the corresponding triplets with M1 = H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M3 = Cl behave similarly to those with M3 = Br. Conversely, triplets with M3 = H show similar stabilities and linearities to those with M3 = F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M1-Ge-M2-M3 become more stable as the electropositivities of the α-substituents (M1 and M2) and the electronegativity of the β-substituent (M3) increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Stang PJ (1978) Unsaturated carbenes. Chem Rev 78(4):383–405

    Article  CAS  Google Scholar 

  2. Haerizade BN, Kassaee MZ, Zandi H, Koohi M, Ahmadi AA (2014) Ylide stabilized carbenes: a computational study. J Phys Org Chem 27:902–908

    Article  CAS  Google Scholar 

  3. Sojoudi A, Shakib FA, Momeni MR, Imani M, Shojaee S (2013) Estimating the stability and reactivity of acyclic and cyclic mono-heteroatom substituted germylenes: a density functional theory investigation. Comput Theor Chem 1009:81–85

    Article  CAS  Google Scholar 

  4. Schaper LA, Wei X, Altmann PJ, Öfele K et al (2013) Synthesis and comparison of transition metal complexes of abnormal and normal tetrazolylidenes: a neglected ligand species. Inorg Chem 52(12):7031–7044

  5. Kassaee MZ, Momeni MR, Shakib FA, Najafi Z, Zandi H (2011) Effects of α-cyclopropyl on heterocyclic carbenes stability at DFT. J Phys Org Chem 24(11):1022–1029

    Article  CAS  Google Scholar 

  6. Cernicharo J, Gottlieb CA, Guélin M et al (1991) Astronomical detection of H2CCC. Astrophys J 368:L39–L41

  7. Redondo P, Redondo JR, Largo A (2000) Structures and energies of the chlorine-substituted analogues of C3H2: an ab initio and density functional theory comparative study. J Mol Struct THEOCHEM 505(1):221–232

  8. Thaddeus P, Vrtilek JM, Gottlieb CA (1985) Laboratory and astronomical identification of cyclopropenylidene, C3H2. Astrophys J 299:L63–L66

  9. Reisenauer HP, Maier G, Riemann A, Hoffmann RW (1984) Cyclopropenylidene. Angew Chem Int Ed 23(8):641–641

    Article  Google Scholar 

  10. Maier G, Reisenauer HP, Schwab W, Carsky P, Hess Jr BA, Schaad LJ (1987) Vinylidene carbene: a new C3H2 species. J Am Soc 109(17):5183–5188

  11. Vrtilek JM, Gottlieb EW, Killian TC, Thaddeus P (1990) Laboratory detection of propadienylidene, H2CCC. Astrophys J 364:L53–L56

  12. Kassaee MZ, Nimlos MR, Downie KE, Waali EE (1985) A mndo study of 3-, 5-, 7- and 9-membered carbocyclic, completely conjugated, planar carbenes and their nonplanar isomers. Tetrahedron 41(8):1579–1586

  13. Apeloig Y, Pauncz R, Karni M, Karni R (2003) Why is methylene a ground state triplet while silylene is a ground state singlet? Organometallics 22(16):3250–3256

    Article  CAS  Google Scholar 

  14. Razuvaev GA, Gribov BG, Domrachev GA, Salamatin BA (1972) Organometallic compounds in electronics. Science, Moscow

    Google Scholar 

  15. Gribov BG, Domrachev GA, Zhuk BV, Kaverin BS, Kozyrkin BI, Mel’nikov VV, Suvorova ON (1981) Precipitation of films and covers by decomposition of metalloorganic compounds. Science, Moscow, p 322

  16. Ward SG, Taylor RC (1988) In: Gielen MF (ed) Metal-based anti-tumor drugs. Freund, London

  17. Voronkov MG, Abzaeva KA (2009) Genesis and evolution in the chemistry of organogermanium, organotin and organolead compounds. In: Rappoport Z (ed) The chemistry of organic germanium, tin and lead compounds, vol 2. Wiley, Chichester

  18. Kocsor TG, Petrar PM, Nemes G, Castel A, Escudié J, Deak N, Silaghi-Dumitrescu L (2011) Designing bis(phosphaalkenyl)germylenes and their tungsten complexes—a theoretical study. Comput Theor Chem 974(1):117–121

  19. Kassaee MZ, Ghambarian M, Musavi SM (2005) In search of triplet ground state GeCNX germylenes (X= H, F, Cl, and Br): an ab initio and DFT study. J Organomet Chem 690(21):4692–4703

    Article  CAS  Google Scholar 

  20. Kassaee MZ, Musavi SM, Ghambarian M (2005) Divalent propargylenic C2H2M group 14 elements: structures and singlet–triplet energy splittings (M= C, Si, Ge, Sn and Pb). J Mol Struct THEOCHEM 731(1):225–231

  21. Kassaee MZ, Arshadi S, Acedy M, Vessally E (2005) Singlet–triplet energy separations in divalent five-membered cyclic conjugated C5H3X, C4H3SiX, C4H3GeX, C4H3SnX, and C4H3PbX (X = H, F, Cl, and Br). J Organomet Chem 690(14):3427–3439

  22. Kassaee MZ, Musavi SM, Ghambarian M, Khalili Zanjani MR (2006) Switching of global minima of novel germylenic reactive intermediates via halogens (X): C2GeH2 vs. C2GeHX at ab initio and DFT levels. J Organomet Chem 691(13):2933–2944

  23. Kassaee MZ, Buazar F, Soleimani-Amiri S (2008) Triplet germylenes with separable minima at ab initio and DFT levels. J Mol Struct THEOCHEM 866(1):52–57

    Article  CAS  Google Scholar 

  24. Harrison JF, Liedtke RC, Liebman JF (1979) The multiplicity of substituted acyclic carbenes and related molecules. J Am Chem Soc 101(24):7162–7168

    Article  CAS  Google Scholar 

  25. Feller D, Borden WT, Davidson ER (1980) Dependence of the singlet-triplet splitting in heterosubstituted carbenes on the heteroatom electronegativity and conformation. Chem Phys Lett 71(1):22–26

  26. Frenking G, Koch W (1987) The singlet-triplet splitting of the low-lying electronic states of H2O2 + and a comparison with isoelectronic CH2 and CH2 2+. Chem Phys Lett 138(6):503–508

  27. Sekiguchi A, Tanaka T, Ichinohe M, Akiyama K, Gaspar PP (2008) Tri-tert-butylsilylsilylenes with alkali metal substituents (tBu3Si)SiM (M = Li, K): electronically and sterically accessible triplet ground states. J Am Chem Soc 130(2):426–427

  28. Leshina TV, Volkova OS, Taraban MB (2001) Synthesis and characterization of triplet germylene-bridged diiron complexes and singlet stannylene-bridged diiron complexes. Russ Chem Bull Int Ed 33(2):112–113

  29. Gaspar PP, Xiao M, Ho Pae D, Berger DJ, Haile T, Chen T, Lei D, Winchester WR, Jiang P (2002) The quest for triplet ground state silylenes. J Organomet Chem 646(1):68–79

    Article  CAS  Google Scholar 

  30. Kendall RA, Dunning Jr TH, Harrison RJJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. Chem Phys 96(9):6796–6806

    CAS  Google Scholar 

  31. Chong DP (ed) (1997) Recent advances in density functional methods, parts I and II. World Scientific, Singapore

  32. Barone V, Bencini A (eds) (1999) Recent advances in density functional methods, part III. World Scientific, Singapore

  33. Adamo C, di Matteo A, Barone V (1999) From classical density functionals to adiabatic connection methods. The state of the art. Adv Quantum Chem 36:45–75

  34. Ess DH, Houk KN (2005) Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions. J Phys Chem A 109:9542–9553

  35. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167

  36. Aysin RR, Bukalov SS, Leites LA, Zabula AV (2017) Optical spectra, electronic structure and aromaticity of benzannulated N-heterocyclic carbene and its analogues of the type C6H4(NR)2E: (E = Si, Ge, Sn, Pb). Dalton Trans 46:8774–8781

    Article  CAS  Google Scholar 

  37. Zhang MX, Zhang MJ, Li WZ, Li QZ, Cheng JB (2015) Structure of H2GeFMgF and its insertion reactions with RH (R = F, OH, NH2). J Theor Comput Chem 14:01–13

    Google Scholar 

  38. Bao W, Li Y, Lu X (2013) Density functional theory study of mechanism of forming a spiro-Ge-heterocyclic ring compound from H2Ge=Ge: and ethane. Struct Chem 24(5):1615–1619

    Article  CAS  Google Scholar 

  39. Li WZ, Yan BF, Li QZ, Cheng JB (2013) The insertion reactions of the germylenoid H2GeLiF with CH3X (X = F, Cl, Br). J Organomet Chem 724:163–166

    Article  CAS  Google Scholar 

  40. Yan B, Li W, Xiao C, Li Q, Cheng J (2013) A new reaction mode of germanium-silicon bond formation: insertion reactions of H2GeLiF with SiH3X (X = F, Cl, Br). J Mol Model 19(10):4537–4543

    Article  CAS  Google Scholar 

  41. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  42. Hoffmann R, Schleyer PR, Schaefer HF (2008) Predicting molecules—more realism, please! Angew Chem Int Ed 47(38):7164–7167

    Article  Google Scholar 

  43. Sulzbach HM, Bolton E, Lenoir D, Schleyer PR, Schaefer HF (1996) Tetra-tert-butylethylene: an elusive molecule with a highly twisted double bond. Can it be made by carbene dimerization? J Am Chem Soc 118(41):9908–9914

  44. B Blom, M Driess (2013) Recent advances in silylene chemistry: small molecule activation en-route towards metal-free catalysis. In: Scheschkewitz D (ed) Functional molecular silicon compounds II. Structure and bonding series, vol 156. Springer, Cham, pp 85–123

  45. Bundhun A, Abdallah HH, Ramasami P, Schaefer HF (2010) Germylenes: structures, electron affinities, and singlet-triplet gaps of the conventional XGeCY3 (X = H, F, Cl, Br, and I; Y = F and Cl) species and the unexpected cyclic XGeCY3 (Y = Br and I) systems. J Phys Chem A 114:13198–13212

    Article  CAS  Google Scholar 

  46. Whitten KW, Davis R, Peck ML, Stanley GG (2007) Chemistry, 8th edn. Thomson Learning, Boston

Download references

Acknowledgements

The authors wish to gratefully thank Dr. Maryam Koohi for many cooperative discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Zaman Kassaee.

Electronic supplementary material

ESM 1

(DOCX 759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassaee, M.Z., Ashenagar, S. Theoretical descriptions of novel triplet germylenes M1-Ge-M2-M3 (M1 = H, Li, Na, K; M2 = Be, Mg, Ca; M3 = H, F, Cl, Br). J Mol Model 24, 49 (2018). https://doi.org/10.1007/s00894-017-3575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3575-6

Keywords

Navigation