Skip to main content
Log in

Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field

  • Review
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298–348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches.

Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hermann W.O., Haehnel W. (1924) Verfahren zur herstellung von polymeren vinylalkohol, German Patent DE490041

  2. Peppas NA, Merrill EW (1977) Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci 21:1763–1770

    Article  CAS  Google Scholar 

  3. Hyon SH, Cha WI, Ikada Y (1989) Preparation of transparent poly(vinyl alcohol) hydrogel. Polym Bull 22:119–122

    Article  CAS  Google Scholar 

  4. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65

    Article  CAS  Google Scholar 

  5. Kenawy ER, Kamoun EA, Eldin MSM, El-Meligy MA (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7:372–380

    Article  CAS  Google Scholar 

  6. Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2:112 (1-5)

    Article  Google Scholar 

  7. Wang X, Fang D, Yoon K, Hsiao BS, Chu B (2006) High-performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold. J Membr Sci 278:261–268

    Article  CAS  Google Scholar 

  8. Zhang Y, Li H, Li H, Li R, Xiao C (2006) Preparation and characterization of modified polyvinyl alcohol ultrafiltration membranes. Desalination 192:214–223

    Article  CAS  Google Scholar 

  9. Jegal J, Lee KH (1999) Nanofiltration membranes based on poly(vinyl alcohol) and ionic polymers. J Appl Polym Sci 72:1755–1762

    Article  CAS  Google Scholar 

  10. Gimenes ML, Liu L, Feng X (2007) Sericin/poly(vinyl alcohol) blend membranes for pervaporation separation of ethanol/water mixtures. J Membr Sci 295:71–79

    Article  CAS  Google Scholar 

  11. Premakshi HG, Kariduraganavar MY, Mitchell GR (2016) Development of composite anion-exchange membranes using poly(vinyl alcohol) and silica precursor for pervaporation separation of water–isopropanol mixtures. RCS Adv 6:11802–11814

    CAS  Google Scholar 

  12. Lang K, Sourirajan S, Matsuura T, Chowdhury G (1996) A study on the preparation of polyvinyl alcohol thin-film composite membranes and reverse osmosis testing. Desalination 104:185–196

    Article  CAS  Google Scholar 

  13. Bermejo JS, Ugarte CM (2009) Chemical Crosslinking of PVA and prediction of material properties by means of fully atomistic MD simulations. Macromol Theory Simul 18:259–267

    Article  CAS  Google Scholar 

  14. Bermejo JS, Ugarte CM (2009) Influence of cross-linking density on the glass transition and structure of chemically cross-linked PVA: a molecular dynamics study. Macromol Theory Simul 18:317–327

    Article  CAS  Google Scholar 

  15. Havryliv R, Maystruk V, Biliak V (2015) Development of a numerical model for gas-solid flow in the industrial cyclone-calciner furnace. EEJET 3/8(75):14–21

  16. Havryliv R, Maystruk V (2017) Development of a combustion model in the industrial cyclone-calciner furnace using CFD-modeling. Chem Chem Technol 11(1):71–80

  17. Chang K-S, Yoshioka T, Kanezashi M, Tsuru T, Tung K-L (2010) A molecular dynamics simulation of a homogeneous organic-inorganic hybrid silica membrane. Chem Commun (Camb) 46(48):9140–9142

    Article  CAS  Google Scholar 

  18. Lithoxoos GP, Labropoulos A, Peristeras LD, Kanellopoulos N, Samios J, Economou IG (2010) Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: a combined experimental and Monte Carlo molecular simulation study. J Supercrit Fluids 55:510–523

    Article  CAS  Google Scholar 

  19. Tzu-Jen, Heinz H (2016) Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, mechanics, hydration, and biological interfaces. J Phys Chem C 120(9):4975–4992

    Article  Google Scholar 

  20. Chakraborty T, Hens A, Kulashrestha S, Chandra MN, Banerjee P (2015) Calculation of diffusion coefficient of long chain molecules using molecular dynamics. Physica E 69:371–377

    Article  CAS  Google Scholar 

  21. Bazooyar F, Momany FA, Bolton K (2012) Validating empirical force fields for molecular-level simulation of cellulose dissolution. Comput Theor Chem 984:119–127

    Article  CAS  Google Scholar 

  22. Technical references of SEKISUI taken from http://www.sekisui-sc.com/wp-content/uploads/SelvolEPVOH305_EN_TechData.pdf

Download references

Acknowledgements

This study was supported by the project “Determination of an influence of composition and spatial structure of hydrogels on the properties of entrapped biocatalysts” financed by NCN 2015/19/D/ST8/01899 (Poland). The computations have been carried out in Wroclaw Networking and Supercomputing Centre WCSS under computational grant no. 172 using BIOVIA Materials Studio 8.0 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Radosinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radosinski, L., Labus, K. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field. J Mol Model 23, 305 (2017). https://doi.org/10.1007/s00894-017-3472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3472-z

Keywords

Navigation