Skip to main content
Log in

Intrinsic structural variability in GNRA-like tetraloops: insight from molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structure of a hairpin loop—in particular its large accessible surface area and its exposed hydrogen-bonding edges—facilitate an inherent possibility for interactions. Just like higher-order RNA macromolecules, pre-microRNAs possess a hairpin loop, and it plays a crucial role in miRNA biogenesis. Upon inspecting the crystal structures of RNAs with various functions, we noticed that, along with a fairly long double helix, the RNAs contained sequentially different hairpin loops comprising four residues. We therefore applied molecular dynamics simulation to analyze six of these previously unexplored tetraloops, along with GNRA (where N is any nucleotide and R is a purine nucleotide) tetraloops, to understand their structural and functional characteristics. A number of analyses quantifying loop stability by examining base–base stacking, base–sugar and base–phosphate hydrogen bonding, and backbone variability were performed. Importantly, we determined the different interbase stacking preferences of the single-stranded unpaired bases of the hairpin loops, which had not previously been quantified in any form. Furthermore, our study indicates that canonical GNRA structural properties are exhibited by some structures containing non-GNRA loop sequences.

Stacking overlap at loop region

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3
Fig. 4a–f

Similar content being viewed by others

References

  1. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15:R17–R29. https://doi.org/10.1093/hmg/ddl046

    Article  CAS  PubMed  Google Scholar 

  2. Kaikkonen MU, Lam MTY, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90:430–440. https://doi.org/10.1093/cvr/cvr097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Phillips T (2014) Small non-coding RNA and gene expression. Nat Educ 1:115

    Google Scholar 

  4. Hendrix DK, Brenner SE, Holbrook SR (2005) RNA structural motifs: building blocks of a modular biomolecule. Q Rev Biophys 38:221–243. https://doi.org/10.1017/S0033583506004215

    Article  CAS  PubMed  Google Scholar 

  5. Gutell RR (2013) Comparative analysis of the higher-order structure of RNA. In: Russell R (ed) Biophysics of RNA folding. Springer, New York, pp 11–22

    Google Scholar 

  6. Petrov AI, Zirbel CL, Leontis NB (2013) Automated classification of RNA 3D motifs and the RNA 3D motif atlas. RNA 19:1327–1340. https://doi.org/10.1261/rna.039438.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15:469–479. https://doi.org/10.1038/nrg3681

    Article  CAS  PubMed  Google Scholar 

  8. Weeks KM (2015) Review toward all RNA structures, concisely. Biopolymers 103:438–448. https://doi.org/10.1002/bip.22601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parlea LG, Sweeney BA, Hosseini-Asanjan M, et al. (2016) The RNA 3D motif atlas: computational methods for extraction, organization and evaluation of RNA motifs. Methods 103:99–119. https://doi.org/10.1016/j.ymeth.2016.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheong C, Cheong H-K (2015) RNA structure: tetraloops. eLS. https://doi.org/10.1002/9780470015902.a0003135.pub2

  11. Woese CR, Winker S, Gutell RR (1990) Architecture of ribosomal RNA: constraints on the sequence of “tetra-loops”. Proc Natl Acad Sci USA 87:8467–8471. https://doi.org/10.1073/pnas.87.21.8467

    Article  CAS  Google Scholar 

  12. Groebe DR, Uhlenbeck OC (1988) Characterization of RNA hairpin loop stability. Nucleic Acids Res 16:11725–11735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuznetsov SV, Ren C-C, Woodson SA, Ansari A (2008) Loop dependence of the stability and dynamics of nucleic acid hairpins. Nucleic Acids Res 36:1098–1112. https://doi.org/10.1093/nar/gkm1083

    Article  CAS  PubMed  Google Scholar 

  14. Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24:138–148. https://doi.org/10.1038/sj.emboj.7600491

    Article  CAS  PubMed  Google Scholar 

  15. Lund E, Dahlberg JE (2006) Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 71:59–66. https://doi.org/10.1101/sqb.2006.71.050

    Article  CAS  PubMed  Google Scholar 

  16. Michlewski G, Guil S, Semple CA, Cáceres JF (2008) Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 32:383–393. https://doi.org/10.1016/j.molcel.2008.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mirihana Arachchilage G, Dassanayake AC, Basu S (2015) A potassium ion-dependent RNA structural switch regulates human pre-miRNA 92b maturation. Chem Biol 22:262–272. https://doi.org/10.1016/j.chembiol.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  18. Bikard D, Loot C, Baharoglu Z, Mazel D (2010) Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 74:570–588. https://doi.org/10.1128/MMBR.00026-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee JC, Gutell RR (2014) Helix capping in RNA structure. PLoS One 9:e93664. https://doi.org/10.1371/journal.pone.0093664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fujita Y, Tanaka T, Furuta H, Ikawa Y (2012) Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch. J Biosci Bioeng 113:141–145. https://doi.org/10.1016/j.jbiosc.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  21. Fiore JL, Nesbitt DJ (2013) An RNA folding motif: GNRA tetraloop–receptor interactions. Q Rev Biophys 46:223–264. https://doi.org/10.1017/S0033583513000048

    Article  CAS  PubMed  Google Scholar 

  22. Thapar R, Denmon AP, Nikonowicz EP (2014) Recognition modes of RNA tetraloops and tetraloop-like motifs by RNA-binding proteins. Wiley Interdisc Rev RNA 5:49–67. https://doi.org/10.1002/wrna.1196

    Article  CAS  Google Scholar 

  23. Kralovicova J, Patel A, Searle M, Vorechovsky I (2015) The role of short RNA loops in recognition of a single-hairpin exon derived from a mammalian-wide interspersed repeat. RNA Biol 12:54–69. https://doi.org/10.1080/15476286.2015.1017207

    Article  PubMed  PubMed Central  Google Scholar 

  24. Uhlenbeck OC (1990) Tetraloops and RNA folding. Nature 346:613–614. https://doi.org/10.1038/346613a0

    Article  CAS  PubMed  Google Scholar 

  25. Bevilacqua PC, Blose JM (2008) Structures, kinetics, thermodynamics, and biological functions of RNA hairpins. Annu Rev Phys Chem 59:79–103. https://doi.org/10.1146/annurev.physchem.59.032607.093743

    Article  CAS  PubMed  Google Scholar 

  26. Banáš P, Hollas D, Zgarbová M, et al. (2010) Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J Chem Theory Comput 6:3836–3849

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aviv T, Lin Z, Ben-Ari G, et al. (2006) Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p. Nat Struct Mol Biol 13:168–176. https://doi.org/10.1038/nsmb1053

    Article  CAS  PubMed  Google Scholar 

  28. Sahu B, Khade PK, Joseph S (2012) Functional replacement of two highly conserved tetraloops in the bacterial ribosome. Biochemistry 51:7618–7626. https://doi.org/10.1021/bi300930r

    Article  CAS  PubMed  Google Scholar 

  29. Deng N-JJ, Cieplak P (2010) Free energy profile of RNA hairpins: a molecular dynamics simulation study. Biophys J 98:627–636. https://doi.org/10.1016/j.bpj.2009.10.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chakraborty D, Collepardo-Guevara R, Wales DJ (2014) Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins. J Am Chem Soc 136:18052–18061. https://doi.org/10.1021/ja5100756

    Article  CAS  PubMed  Google Scholar 

  31. Miner JC, Chen AA, García AE (2016) Free-energy landscape of a hyperstable RNA tetraloop. Proc Natl Acad Sci USA 113:6665–6670. https://doi.org/10.1073/pnas.1603154113

    Article  CAS  Google Scholar 

  32. Nivón LG, Shakhnovich EI (2004) All-atom Monte Carlo simulation of GCAA RNA folding. J Mol Biol 344:29–45. https://doi.org/10.1016/j.jmb.2004.09.041

    Article  CAS  PubMed  Google Scholar 

  33. Chen AA, Garcia AE (2013) High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. Proc Natl Acad Sci USA 110:16820–16825. https://doi.org/10.1073/pnas.1309392110

    Article  CAS  Google Scholar 

  34. Bisaria N, Herschlag D (2015) Probing the kinetic and thermodynamic consequences of the tetraloop/tetraloop receptor monovalent ion-binding site in P4–P6 RNA by smFRET. Biochem Soc Trans 43:172–178. https://doi.org/10.1042/BST20140268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Furukawa A, Maejima T, Matsumura S, Ikawa Y (2016) Characterization of an RNA receptor motif that recognizes a GCGA tetraloop. Biosci Biotechnol Biochem 80:1386–9. doi:https://doi.org/10.1080/09168451.2016.1156483

    Article  CAS  PubMed  Google Scholar 

  36. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  37. Castilla-Llorente V, Nicastro G, Ramos A (2013) Terminal loop-mediated regulation of miRNA biogenesis: selectivity and mechanisms. Biochem Soc Trans 41:861–865. https://doi.org/10.1042/BST20130058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kundu S, Mukherjee S, Bhattacharyya D (2012) Effect of temperature on DNA double helix: an insight from molecular dynamics simulation. J Biosci 37:445–455. https://doi.org/10.1007/s12038-012-9215-5

    Article  CAS  PubMed  Google Scholar 

  39. Mukherjee S, Bhattacharyya D (2013) Influence of divalent magnesium ion on DNA: molecular dynamics simulation studies. J Biomol Struct Dyn 31:896–912. https://doi.org/10.1080/07391102.2012.713780

    Article  CAS  PubMed  Google Scholar 

  40. Ben Imeddourene A, Xu X, Zargarian L, et al. (2016) The intrinsic mechanics of B-DNA in solution characterized by NMR. Nucleic Acids Res 44:3432–3447. https://doi.org/10.1093/nar/gkw084

    Article  CAS  Google Scholar 

  41. Colizzi F, Bussi G (2012) RNA unwinding from reweighted pulling simulations. J Am Chem Soc 134:5173–5179. https://doi.org/10.1021/ja210531q

    Article  CAS  PubMed  Google Scholar 

  42. Zgarbová M, Otyepka M, Šponer J, et al. (2014) Base pair fraying in molecular dynamics simulations of DNA and RNA. J Chem Theory Comput 10:3177–3189. https://doi.org/10.1021/ct500120v

    Article  CAS  PubMed  Google Scholar 

  43. Xu X, Yu T, Chen S-J (2016) Understanding the kinetic mechanism of RNA single base pair formation. Proc Natl Acad Sci USA 113:116–121. https://doi.org/10.1073/pnas.1517511113

    Article  Google Scholar 

  44. Melchers WJG, Zoll J, Tessari M, et al. (2006) A GCUA tetranucleotide loop found in the poliovirus oriL by in vivo SELEX (un)expectedly forms a YNMG-like structure: extending the YNMG family with GYYA. RNA 12:1671–1682. https://doi.org/10.1261/rna.113106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Du Z, Yu J, Andino R, James TL (2003) Extending the family of UNCG-like tetraloop motifs: NMR structure of a CACG tetraloop from coxsackievirus B3. Biochemistry 42:4373–4383. https://doi.org/10.1021/bi027314e

    Article  CAS  PubMed  Google Scholar 

  46. Bottaro S, Lindorff-Larsen K (2017) Mapping the universe of RNA tetraloop folds. Biophys J 113:257–267. https://doi.org/10.1016/j.bpj.2017.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pingali PK, Halder S, Mukherjee D, et al. (2014) Analysis of stacking overlap in nucleic acid structures: algorithm and application. J Comput Aided Mol Des 28:851–867. https://doi.org/10.1007/s10822-014-9767-6

    Article  CAS  PubMed  Google Scholar 

  48. Das J, Mukherjee S, Mitra A, Bhattacharyya D (2006) Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis. J Biomol Struct Dyn 24:149–161. https://doi.org/10.1080/07391102.2006.10507108

    Article  CAS  PubMed  Google Scholar 

  49. Ray SS, Halder S, Kaypee S, Bhattacharyya D (2012) HD-RNAS: an automated hierarchical database of RNA structures. Front Genet 3:59. https://doi.org/10.3389/fgene.2012.00059

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kührová P, Best RB, Bottaro S, et al (2016) Computer folding of RNA tetraloops: identification of key force field deficiencies. J Chem Theory Comput 12:4534–4548. doi:https://doi.org/10.1021/acs.jctc.6b00300

    Article  PubMed  PubMed Central  Google Scholar 

  51. Allnér O, Nilsson L, Villa A (2013) Loop–loop interaction in an adenine-sensing riboswitch: a molecular dynamics study. RNA 19:916–926. https://doi.org/10.1261/rna.037549.112.1

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ochieng PO, White NA, Feig M, Hoogstraten CG (2016) Intrinsic base-pair rearrangement in the hairpin ribozyme directs RNA conformational sampling and tertiary interface formation. J Phys Chem B 120:10885–10898. https://doi.org/10.1021/acs.jpcb.6b05606

    Article  CAS  PubMed  Google Scholar 

  53. Halder S, Bhattacharyya D (2012) Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis. J Phys Chem B 116:11845–11856. https://doi.org/10.1021/jp305628v

    Article  CAS  PubMed  Google Scholar 

  54. Bergonzo C, Henriksen NM, Roe DR, Cheatham TE (2015) Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields. RNA 21:1578–1590. https://doi.org/10.1261/rna.051102.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. MacKerell AD, Banavali NK (2000) All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J Comput Chem 21:105–120. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P

    Article  CAS  Google Scholar 

  56. Denning EJ, Priyakumar UD, Nilsson L, Mackerell AD (2011) Impact of 2′-hydroxyl sampling on the conformational properties of RNA: update of the CHARMM all-atom additive force field for RNA. J Comput Chem 32:1929–1943. https://doi.org/10.1002/jcc.21777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145. https://doi.org/10.1002/jcc.23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pérez A, Marchán I, Svozil D, et al. (2007) Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys J 92:3817–3829. https://doi.org/10.1529/biophysj.106.097782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zgarbová M, Otyepka M, Šponer J, et al. (2011) Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput 7:2886–2902. https://doi.org/10.1021/ct200162x

    Article  PubMed  PubMed Central  Google Scholar 

  60. Berman HM, Olson WK, Beveridge DL, et al. (1992) The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 63:751–759. https://doi.org/10.1016/S0006-3495(92)81649-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jorgensen WL, Chandrasekhar J, Madura JD, et al. (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  62. Kalé L, Skeel R, Bhandarkar M, et al. (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312. https://doi.org/10.1006/jcph.1999.6201

    Article  Google Scholar 

  63. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  64. Brooks BR, Bruccoleri RE, Olafson BD, et al. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217. https://doi.org/10.1002/jcc.540040211

    Article  CAS  Google Scholar 

  65. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613. https://doi.org/10.1063/1.470648

    Article  CAS  Google Scholar 

  66. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  67. Abraham MJ, Murtola T, Schulz R, et al. (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  68. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  69. Bansal M, Bhattacharyya D, Ravi B (1995) NUPARM and NUCGEN: software for analysis and generation of sequence dependent nucleic acid structures. Bioinformatics 11:281–287. https://doi.org/10.1093/bioinformatics/11.3.281

    Article  CAS  Google Scholar 

  70. Mukherjee S, Bansal M, Bhattacharyya D (2006) Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis. J Comput Aided Mol Des 20:629–645. https://doi.org/10.1007/s10822-006-9083-x

    Article  CAS  PubMed  Google Scholar 

  71. R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  72. Schrodinger, LLC (2013) The PyMOL molecular graphics system, version 1.6. Schrodinger, LLC, New York

  73. Duarte CM, Pyle AM (1998) Stepping through an RNA structure: a novel approach to conformational analysis. J Mol Biol 284:1465–1478. https://doi.org/10.1006/jmbi.1998.2233

    Article  CAS  PubMed  Google Scholar 

  74. Ray A, Panigrahi S, Bhattacharyya D (2016) A comparison of four different conformations adopted by human telomeric G-quadruplex using computer simulations. Biopolymers 105:83–99. https://doi.org/10.1002/bip.22751

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, Zhao X, Mu Y (2009) Conformational transition map of an RNA GCAA tetraloop explored by replica-exchange molecular dynamics simulation. J Chem Theory Comput 5:1146–1154

    Article  CAS  PubMed  Google Scholar 

  76. DePaul AJ, Thompson EJ, Patel SS, et al. (2010) Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics. Nucleic Acids Res 38:4856–4867. https://doi.org/10.1093/nar/gkq134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Condon DE, Kennedy SD, Mort BC, et al. (2015) Stacking in RNA: NMR of four tetramers benchmark molecular dynamics. J Chem Theory Comput 11:2729–2742. https://doi.org/10.1021/ct501025q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sokoloski JE, Godfrey SA, Dombrowski SE, Bevilacqua PC (2011) Prevalence of syn nucleobases in the active sites of functional RNAs. RNA 17:1775–1787. https://doi.org/10.1261/rna.2759911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Olson WK, Bansal M, Burley SK, et al. (2001) A standard reference frame for the description of nucleic acid base-pair geometry. J Mol Biol 313:229–237. https://doi.org/10.1006/jmbi.2001.4987

    Article  CAS  PubMed  Google Scholar 

  80. Olson WK, Esguerra M, Xin Y, Lu X-J (2009) New information content in RNA base pairing deduced from quantitative analysis of high-resolution structures. Methods 47:177–186. https://doi.org/10.1016/j.ymeth.2008.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kailasam S, Bhattacharyya D, Bansal M (2014) Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps. BMC Res Notes 7:83. https://doi.org/10.1186/1756-0500-7-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sorin EJ, Engelhardt MA, Herschlag D, Pande VS (2002) RNA simulations: probing hairpin unfolding and the dynamics of a GNRA tetraloop. J Mol Biol 317:493–506. https://doi.org/10.1006/jmbi.2002.5447

    Article  CAS  PubMed  Google Scholar 

  83. Zhang X, Zeng Y (2010) The terminal loop region controls microRNA processing by Drosha and Dicer. Nucleic Acids Res 38:7689–7697. https://doi.org/10.1093/nar/gkq645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Bioinformatics Resources and Applications Facility (BRAF), C-DAC, Pune for providing computation facilities.

Funding

This work was supported by the Department of Atomic Energy, India through the BARD project and the Department of Biotechnology, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Bhattacharyya.

Electronic supplementary material

ESM 1

(PDF 2394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, D., Bhattacharyya, D. Intrinsic structural variability in GNRA-like tetraloops: insight from molecular dynamics simulation. J Mol Model 23, 300 (2017). https://doi.org/10.1007/s00894-017-3470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3470-1

Keywords

Navigation