Skip to main content
Log in

Metal–metal bonding in 1st, 2nd and 3rd row transition metal complexes: a topological analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A topological analysis based on density functional electronic and spin densities of the bonding characteristics in a series of Fe, Ru, Os, Tc and Rh dimers and trimers bridged, respectively, by μ-1,8-naphthyridine (nap) and μ-2,2′-dipyridylamine (dpa) is presented. By this simple qualitative analysis, we were able to determine the electronic ground state and correlated bonding order for a number of complexes potentially involved in extended metal atom chains (EMAC). Furthermore, we showed in the Ru dimer that it was possible to control the spin state simply by changing the bonded counter-anion.

Electron localization analysis of the bonding properties in [M2(nap)4Cl2]2+ and [M3(dpa)4(Cl2] complexes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Scheme 4

Similar content being viewed by others

References

  1. Aduldecha S, Hathaway B (1991) J Chem Soc Dalton Trans 1991:993

  2. Wu LP, Field P, Morrissey T, Murphy C, Nagle P, Hathaway B, Simmons C, Thornton P (1990) J Chem Soc Dalton Trans 1990: 3835

  3. Pyrka GJ, El-Mekki M, Pinkerton AA (1991) J Chem Soc Chem Commun 1991:84

  4. Tejel C, Ciriano MA, Villarroya BE, López JA, Lahoz FJ, Oro LA (2003) Angew Chem Int Ed 42:509

    Article  Google Scholar 

  5. Yeh C-Y, Wang C-C, Chen C-H, Peng S-M (2006) Molecular metal wires built from a linear metal atom chainsupported by oligopyridylamido ligands. In: Hirao T (ed) Redox systems under nano-space control. Springer, Berlin, pp 85–117

  6. López X, Huang M-Y, Huang G-C, Peng S-M, Li F-Y, Bénard M, Rohmer MM (2006) Inorg Chem 45:9075–9084

    Article  Google Scholar 

  7. Po-Chun Liu I, Lee G-H, Peng S-M, Bénard M, Rohmer MM (2007) Inorg Chem 46:9602–9608

    Article  Google Scholar 

  8. Hua SA, Huang GC, Liu IPC, Kuo JH, Jiang CH, Chiu CL, Yeh CY, Lee GH, Peng SM (2010) Chem Commun 46:5018

    Article  CAS  Google Scholar 

  9. Yin C, Huang GC, Kuo CK, Fu MD, Lu HC, Ke JH, Shih KN, Huang YL, Lee GH, Yeh CY, Chen CH, Peng SM (2008) J Am Chem Soc 130:10090

    Article  CAS  Google Scholar 

  10. Kuo JH, Tsao TB, Lee GH, Lee HW, Yeh CY, Peng SM (2011) Eur J Inorg Chem 2011:2025

  11. Ismayilov RH, Wang WZ, Lee GH, Yeh CY, Hua SA, Song Y, Rohmer MM, Bénard M, Peng SM (2011) Angew Chem Int Ed 50:2045

    Article  CAS  Google Scholar 

  12. Huang G-C, Bénard M, Rohmer MM, Li L-A, Chiu M-J, Yeh C-Y, Lee G-H, Peng S-M (2008) Eur J Inorg Chem 2008:1767–1777

  13. Bénard M, Berry JF, Cotton A, Gaudin C, López X, Murillo CA, Rohmer MM (2006) Inorg Chem 45:3932–3940

    Article  Google Scholar 

  14. López X, Rohmer MM, Bénard M (2008) J Mol Struct 890:18–23

    Article  Google Scholar 

  15. Tabookht Z, López X, de Graaf C (2010) J Phys Chem A 114:2028–2037

    Article  CAS  Google Scholar 

  16. Tabookht Z, De Graaf C, López X (2012) Dalton Trans 41:498–504

    Article  CAS  Google Scholar 

  17. Hohenberg PP, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  18. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  19. Becke D (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  21. Seth M, Ziegler T (2012) J Chem Theory Comput 8:901–907

    Article  CAS  Google Scholar 

  22. Van Lenthe E, Baerends EJ (2003) J Comput Chem 24:1142–1156

    Article  Google Scholar 

  23. Van Lenthe E, Van Leeuwen R, Baerends EJ, Snijders JG (1996) Int J Quantum Chem 57:281–293

    Article  Google Scholar 

  24. SCM (2013) Amsterdam Density Functional (ADF), Software for Chemistry and Materials (SCM) Theoretical Chemistry; Vrije Universiteit, Amsterdam, The Netherlands. https://www.scm.com/Downloads/2013

  25. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  26. Kohout M (2010) Dgrid 5.1 http://www2.cpfs.mpg.de/~kohout/dgrid.html

  27. Llusar R, Beltran A, Andres J, Fuster F, Silvi B (2001) J Phys Chem A 105:9460–9466

  28. Del Carmen Michelini M, Russo N, Alikhani ME, Silvi B (2005) Energetic and topological analyses of the oxidation reaction between Mon (n = 1, 2) and N2O. J Comput Chem 26(12):1284–1293

Download references

Acknowledgments

The authors thank Marc Bénard and Marie-Madeleine Rohmer for having inspired this work. The quantum chemical calculations were performed on the computer nodes of the LCQS, Strasbourg, and we thank the computer facilities of the High Performance Computing (HPC) regional center of University of Strasbourg

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Daniel.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweitzer, B., Daniel, C. & Gourlaouen, C. Metal–metal bonding in 1st, 2nd and 3rd row transition metal complexes: a topological analysis. J Mol Model 23, 163 (2017). https://doi.org/10.1007/s00894-017-3321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3321-0

Keywords

Navigation