Skip to main content
Log in

Modeling of the morphological change of cellulose microfibrils caused with aqueous NaOH solution: the longitudinal contraction and laterally swelling during decrystallization

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The conformation of cellulose microfibrils treated with aqueous NaOH was modeled as partially decrystallized cellulose chains before completing conversion to cellulose II, in order to elucidate the change in morphology of ramie fiber caused by NaOH treatment. Equations for the relative length and width of the microfibrils were derived on the basis of partially decrystallized microfibrils modeling. Each equation contains four parameters, n, β, w c , and c r , which correspond to the number of glucose residues between periodic defects along the untreated ramie cellulose microfibrils, the extension ratio of amorphous cellulose chain along length, the cross-section crystallinity, and the correction term of crystallinity, respectively. The validity of the derived equations was confirmed by two types of simulations. One is performed using experimental data L/L 0 and W/W 0 as a function of crystallinity, while the other is done using the relationship between the relative length and width obtained from the experimental data, which is independent of crystallinity, was performed. The best-fit simulation was obtained under n = 277, β = 2.813, and c r w c  = 0.671 for the former and under n = 301 and β = 2.792 for the latter. These values of n and β correspond closely to the values reported in references for ramie microfibrils. Both simulation results show that macroscopic changes in the morphology of ramie fibers is attributable to the changes in cellulose chain conformation in the decrystallized regions created along the microfibrils upon NaOH treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Okano T, Sarko A (1984) Mercerization of cellulose I: X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182

    Article  CAS  Google Scholar 

  2. Okano T, Sarko A (1985) Mercerization of cellulose II: alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  3. Hayashi J, Yamada T, Shimizu YL (1989) Memory phenomenon of the original crystal structure in allomorphs of Na-cellulose. In: Schuerch C (ed) Cellulose and wood: chemistry and technology proc. Of the tenth cellulose conf. John Wiley and Sons, New York, pp 77–102

    Google Scholar 

  4. Nishimura H, Okano T, Sarko A (1991) Mercerization of cellulose 5: crystal and molecular structure of Na-cellulose I. Macromolecules 24:759–770

    Article  CAS  Google Scholar 

  5. Nishimura H, Okano T, Sarko A (1991) Mercerization of cellulose 6: crystal and molecular structure of Na-cellulose IV. Macromolecules 24:771–778

    Article  CAS  Google Scholar 

  6. Nishiyama Y, Okano T (1998) Morphological changes of ramie fiber during mercerization. J Wood Sci 44:310–313

    Article  CAS  Google Scholar 

  7. Kamide K, Okajima K, Kowsaka K (1985) CP/MASS 13C NMR spectra of cellulose solids: an explanation by the intramolecular hydrogen bond concept. Polym J 17:701–706

    Article  CAS  Google Scholar 

  8. Kamide K, Kowsaka K, Okajima K (1985) Determination of intramolecular hydrogen bonds and selective coordination of sodium cation in alkali cellulose by CP/MASS 13C. Polym J 17:707–711

    Article  CAS  Google Scholar 

  9. Kamide K, Okajima K, Kowsaka K (1985) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. Polym J 24:71–86

    Article  Google Scholar 

  10. O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  11. Roy C, Budtova T, Navard P, Bedue O (2001) Structure of cellulose – soda solutions at low temperature. Biomacromolecules 2:687–693

    Article  CAS  Google Scholar 

  12. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  Google Scholar 

  13. Cai J, Zhang L, Chan C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/Urea solution at low temperature. Chem Phys Chem 8:1572–1579

    Article  CAS  Google Scholar 

  14. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  15. Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87

    Article  CAS  Google Scholar 

  16. Shibazaki H, Saito M, Kuga S, Okano T (1998) Native cellulose production by acetobacter xylinum under physical constrain. Cellulose 5:165–173

    Article  CAS  Google Scholar 

  17. Le Moigne N, Spinu M, Heinze T, Navard P (2010) Restricted dissolution and derivatization capacities of cellulose fibres under uniaxial elongational stress. Polym 51:447–453

    Article  Google Scholar 

  18. Kroon-Batenburg LMJ, Kruiskamp PH, Vliegenthart JFG, Kroon J (1997) Estimation of the persistence length of polymers by MD simulations on small fragmentsin Solution: Application to cellulose. J Phys Chem B 101:8454–8459

    Article  CAS  Google Scholar 

  19. Chen W, Lickfield GC, Yang CQ (2004) Molecular modeling of cellulose in amorphous state part I: model building and plastic deformation study. Polym 45:1063–107

    Article  CAS  Google Scholar 

  20. Queyroy S, Müller-Plathe F, Brown D (2004) Molecular dynamics simulation of cellulose oligomers: conformational analysis. Macromol Theor Simul 13:427–440

    Article  CAS  Google Scholar 

  21. Eichhom SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fiber. Biomacromolecules 6:507–513

    Article  Google Scholar 

  22. Shen T, Langan P, French AD, Johnson GP, Gnanakaran S (2009) Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Am Chem Soc 131:14786–14794

    Article  CAS  Google Scholar 

  23. Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at atomic scale. Biopolymers 82:59–73

    Article  CAS  Google Scholar 

  24. Bocahut A, Delannoy JY, Vergelati C, Mazeau K (2014) Conformational analysis of cellulose acetate in the dense amorphous state. Cellulose 21:3897–3912

    Article  CAS  Google Scholar 

  25. Srinivas G, Cheng X, Smith JC (2014) Coarse-grain model for natural cellulose fibrils in explicit water. J Phys Chem B 118:3026–3034

    Article  CAS  Google Scholar 

  26. Nakano T (1988) Plasticization of wood by alkali treatment: effects of kind of alkali and concentration of alkaline aqueous solution on stress relaxation (in Japanese). Nihon Reoroji Gakkaishi (J Soc Rheol Japan) 16:104–110

    Article  CAS  Google Scholar 

  27. Nakano T (1989) Plasticization of wood by alkali treatment: relationship between plasticization and the ultra-structure (in Japanese). Mokuzai Gakkaishi (J Japan Wood Res Soc) 35:431–437

    CAS  Google Scholar 

  28. Nakano T, Sugiyama J, Norimoto M (2000) Contraction force and transformation of microfibril with aqueous sodium hydroxide solution. Holzforschung 54:315–320

    Article  CAS  Google Scholar 

  29. Nakano T (2010) Mechanism of microfibril contraction and anisotropic dimensional changes for cells in wood treated with aqueous NaOH solution. Cellulose 17:711–719

    Article  CAS  Google Scholar 

  30. Nakano T, Tanimoto T, Hashimoto T (2013) Morphological change induced with NaOH-water solution for ramie fiber: change mechanism and effects of concentration and temperature. J Mater Sci 48:7510–7517

    Article  CAS  Google Scholar 

  31. Nakano S, Nakano T (2014) Change in circularity index of cell lumen in cross-section of wood induced by aqueous NaOH. J Wood Sci 60:99–104

    Article  CAS  Google Scholar 

  32. Nakano S, Nakano T (2015) Morphological changes induced in wood samples by aqueous NaOH treatment and their effects on the conversion of cellulose I to cellulose II. Holzforschung 69:483–491

    Article  CAS  Google Scholar 

  33. Tanimoto T, Nakano T (2012) Stress relaxation of wood partially non-crystallized using aqueous NaOH solutions. Carbohydr Polym 87:2145–2148

    Article  CAS  Google Scholar 

  34. Tanimoto T, Nakano T (2013) Side-chain motion of components in wood samples partially no-crystallized using NaOH-water solution. Mater Sci Eng C 33:1236–1241

    Article  CAS  Google Scholar 

  35. Tanimoto T, Nakano T (2015) Difference in reduction properties between longitudinal dimension and elastic modulus of wood induced with aqueous NaOH treatment: modeling and analysis. J Wood Sci 62:12–19

    Article  Google Scholar 

  36. Miura K, Nakano T (2015) Analysis of mercerization process based on the intensity change of deconvoluted resonances of 13C CP/MAS NMR: cellulose mercerized under cooling and noncooling conditions. Mater Sci Eng C 53:189–195

    Article  CAS  Google Scholar 

  37. Miura K, Nakano T (2016) Analysis of the effects of restriction of longitudinal contraction on the conversion from cellulose I to cellulose II using CP/MAS 13C NMR: Mercerization of ramie fibers under noncooling and cooling conditions. J Mater Sci 51:6331–6340

    Article  CAS  Google Scholar 

  38. Fink H-P, Philipp B (1985) Models of cellulose physical structure from the viewpoint of the cellulose I → II transition. J Appl Polym Sci 30:3779–3790

    Article  CAS  Google Scholar 

  39. Benoit H (1947) Sur la statique des chains avec interactions et empechements ateriques. J Chem Phys 44:18–21

    Google Scholar 

  40. Nishiyama H, Kim U, Kim D, Katsumata K, May RP, Langan P (2003) Periodic disorder along ralmie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  CAS  Google Scholar 

  41. Slater GW, Gratton Y, Kenward M, Mccormick L, Tessier F (2004) Deformation, stretching, and relaxation of single-polymer chains: fundamental and examples. Soft Mater 2:155–182

    Article  CAS  Google Scholar 

  42. Nishino T, Takano K, Nakamae K, Saitaka K, Itakura S, Azuma J, Okamura K (2008) Elastic modulus of the crystalline regions of cellulose triesters. J Polym Sci 33:611–618

    Article  Google Scholar 

  43. Gindl W, Reifferscheid M, Adusumalli R-B, Weber H, Röder T, Sixta H, Schöberl T (2008) Anisotropy of the modulus of elasticity in regenerated cellulose fibers related to molecular orientation. Polymer 49:792–799

    Article  CAS  Google Scholar 

  44. Nakamura K, Wada M, Kuga S, Okano K (2004) Poisson’s ratio of cellulose Iβ and cellulose II. J Polym Sci B 42:1206–1211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takato Nakano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, T. Modeling of the morphological change of cellulose microfibrils caused with aqueous NaOH solution: the longitudinal contraction and laterally swelling during decrystallization. J Mol Model 23, 129 (2017). https://doi.org/10.1007/s00894-017-3307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3307-y

Keywords

Navigation