Skip to main content
Log in

Enhanced visible-light response of metal-free doped bulk h-BN as potential efficient photocatalyst: a computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have provided a straightforward route to screen a series of metal-free doped bulk h-BN as potential visible-light photocatalysts via the first-principle computations. Various nonmetal dopants are considered including Si, P, C, S, Cl, O, and F atoms according to increasing electronegativity. The results show that the introduction of nonmetals leads to small lattice distortions but significant modifications of band structures, electron transition paths and chemical bonding interactions. Generally, all doped h-BN except Si doping have an active response to the visible-light, and dopants with higher electronegativity can significantly narrow the band gaps, which could induce easier optical transition under visible-light excitation. Based on the electronic structures and absorption spectra, three different mechanisms of enhanced visible-light response for the doping effect are proposed. It is expected that F, Cl, and S-doped h-BN could be used as potential efficient visible-light driven photocatalysts. This study could aid in the design of novel efficient h-BN photocatalysts.

The mechanisms of the enhanced visible-light response of metal-free doped bulk h-BN

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  2. Shimura K, Yoshida H (2011) Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ Sci 4:2467–2481

    Article  CAS  Google Scholar 

  3. Zhang Q, Zhou Y, Wang F, Dong F, Li W, Li HM, Patzke GR (2014) From semiconductors to semimetals: bismuth as a photocatalyst for NO oxidation in air. J Mater Chem A 2:11065–11072

    Article  CAS  Google Scholar 

  4. Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  5. Hou YD, Wu L, Wang XC, Ding ZX, Li ZH, Fu XZ (2007) Photocatalytic performance of α-, β- and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air. J Catal 250:12–18

    Article  CAS  Google Scholar 

  6. Zhou Y, Zhang XJ, Zhang Q, Dong F, Wang F, Xiong Z (2014) Role of graphene on the band structure and interfacial interaction of Bi2WO6/graphene composites with enhanced photocatalytic oxidation of NO. J Mater Chem A 2:16623–16631

    Article  CAS  Google Scholar 

  7. Gomathi-Devi L, Kavitha R (2014) Review on modified N-TiO2 for green energy applications under UV/visible light: selected results and reaction mechanisms. RSC Adv 4:28265–28299

    Article  CAS  Google Scholar 

  8. Cingarapu S, Ikenberry MA, Hamal DB, Sorensen CM, Hohn K, Klabunde KJ (2012) Transformation of indium nanoparticles to β-indium sulfide: digestive ripening and visible light-induced photocatalytic properties. Langmuir 28:3569–3575

    Article  CAS  Google Scholar 

  9. Chao JF, Wang ZR, Xu X, Xiang QY, Song WF, Chen G, Hu JB, Chen D (2013) Tin sulfide nanoribbons as high performance photoelectrochemical cells, flexible photodetectors and visible-light-driven photocatalysts. RSC Adv 3:2746–2753

    Article  CAS  Google Scholar 

  10. Liu MC, Du YC, Ma LJ, Jing DW, Guo LJ (2012) Manganese doped cadmium sulfide nanocrystal for hydrogen production from water under visible light. Int J Hydrog Energy 37:730–736

    Article  CAS  Google Scholar 

  11. Chhowalla M, Shin H, Eda G, Li L, Loh K, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  12. Wang QH, Kalantar-Zadeh K, Kis A, Coleman J, Strano M (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  CAS  Google Scholar 

  13. Chen Y, Zou J, Campbell S, Le-Caer G (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84:2430–2432

    Article  CAS  Google Scholar 

  14. Golberg D, Bando Y, Kurashima K, Sato T (2001) Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr Mater 44:1561–1565

    Article  CAS  Google Scholar 

  15. Si MS, Xu DS (2006) First-principles study of silicon-doped (5,5) BN nanotubes. EPL-Europhys Lett 76:664

    Article  CAS  Google Scholar 

  16. Chen JJ, Zhu JX, Da ZL, Xu H, Yan J, Ji HY, Shu HM, Li HM (2014) Improving the photocatalytic activity and stability of graphene-like BN/AgBr composites. Appl Surf Sci 313:1–9

    Article  CAS  Google Scholar 

  17. Shi YM, Hamsen C, Jia XT, Kim K, Reina A, Hofmann M, Hsu A, Zhang K, Li HN, Juang Z, Dresselhaus M, Li L, Kong J (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10:4134–4139

    Article  CAS  Google Scholar 

  18. Chen XB, Burda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc 130:5018–5019

    Article  CAS  Google Scholar 

  19. Zhou Y, Zhao ZY, Wang F, Cao K, Doronkin DE, Dong F, Grunwaldt JD (2016) Facile synthesis of surface N-doped Bi2O2CO3: origin of visible light photocatalytic activity and in situ DRIFTS studies. J Hazard Mater 307:163–172

    Article  CAS  Google Scholar 

  20. Li D, Ohashi N, Hishita S, Kolodiazhnyi T, Haneda H (2005) Origin of visible-light-driven photocatalysis: a comparative study on N/F-doped and N–F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations. J Solid State Chem 178:3293–3302

    Article  CAS  Google Scholar 

  21. Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J Phys Chem B 107:5483–5486

    Article  CAS  Google Scholar 

  22. Tang CC, Bando Y, Huang Y, Yue SL, Gu CZ, Xu FF, Golberg D (2005) Fluorination and electrical conductivity of BN nanotubes. J Am Chem Soc 127:6552–6553

    Article  CAS  Google Scholar 

  23. Silva L, Guerini S, Lemos V, Filho J (2006) Electronic and structural properties of oxygen-doped BN nanotubes. IEEE Trans Nano Technol 5:517–522

    Article  Google Scholar 

  24. Huang C, Chen C, Zhang M (2015) Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat Commun 6

  25. Lei W, Zhang H, Wu Y (2014) Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy 6:219–224

    Article  CAS  Google Scholar 

  26. Cho YJ, Kim CH, Kim HS (2008) Electronic structure of Si-doped BN nanotubes using X-ray photoelectron spectroscopy and first-principles calculation. Chem Mater 21:136–143

    Article  Google Scholar 

  27. Yokota Y, Tagawa S, Sugino T (1999) Planar field emitters fabricated by sulfur-doped boron nitride. J Vac Sci Technol B 17:642–646

    Article  CAS  Google Scholar 

  28. White J, Bird D (1994) Implementation of gradient-corrected exchange-correlation potentials in car-parrinello total-energy calculations. Phys Rev B 50:4954–4957

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  30. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  CAS  Google Scholar 

  31. Segall MD, Lindan PJD, Probert MJ (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717

    Article  CAS  Google Scholar 

  32. Dashora A, Patel N, Kothari DC (2014) Formation of an intermediate band in the energy gap of TiO2 by Cu-N-codoping: first principles study and experimental evidence. Sol Energy Mater Sol Cells 125:120–126

    Article  CAS  Google Scholar 

  33. Tian FH, Liu CB (2006) DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2. J Phys Chem B 110:17866–17871

    Article  CAS  Google Scholar 

  34. Yu X, Li C, Ling Y (2010) First principles calculations of electronic and optical properties of Mo-doped rutile TiO2. J Alloys Compd 507:33–37

    Article  CAS  Google Scholar 

  35. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005

    Article  Google Scholar 

  36. Gao SP (2012) Crystal structures and band gap characters of h-BN polytypes predicted by the dispersion corrected DFT and GW method. Solid State Commun 152:1817–1820

    Article  CAS  Google Scholar 

  37. Bučko T, Lebègue S, Hafner J (2013) Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids. Phys Rev B 87:064110

    Article  Google Scholar 

  38. Fischer T, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem C 96:9768–9774

    Article  CAS  Google Scholar 

  39. Lin Y, Connell J (2012) Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4:6908–6939

    Article  CAS  Google Scholar 

  40. Saha S, Sinha T, Mookerjee (2000) A Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys Rev B 62:8828–8834

    Article  CAS  Google Scholar 

  41. McDonnell KA, English NJ, Rahman M, Dowling DP (2012) Influence of doping on the photoactive properties of magnetron-sputtered titania coatings: experimental and theoretical study. Phys Rev B 86(11):115306

    Article  Google Scholar 

  42. Pauling L (1966) The structure and proerties of graphite and boron nitride. Proc Natl Acad Sci U S A 56:1646–1652

    Article  CAS  Google Scholar 

  43. Han WQ, Wu LJ, Zhu YM, Watanabe K, Taniguchi T (2008) Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl Phys Lett 93:223103

    Article  Google Scholar 

  44. Michael EL, Sergey LR, Michael SS (2001) Properties of advanced semiconductor materials. Wiley, New York

    Google Scholar 

  45. Yang KS, Dai Y, Huang BB (2007) Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles. J Phys Chem C 111:18985–18994

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from Scientific Research Starting project of SWPU (2014QHZ020, 2014PYZ012), the Innovative Research Team of Sichuan Province (2016TD0011), and Young Scholars Development Fund of SWPU (201331010043). We appreciate the support from the National Supercomputing Center in Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1S

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Cao, Y., Wei, S. et al. Enhanced visible-light response of metal-free doped bulk h-BN as potential efficient photocatalyst: a computational study. J Mol Model 23, 23 (2017). https://doi.org/10.1007/s00894-016-3198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3198-3

Keywords

Navigation