Skip to main content
Log in

Characterization of B-H agostic compounds involved in the dehydrogenation of amine-boranes by group 4 metallocenes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

For over a decade, amine-borane has been considered as a potential chemical hydrogen vector in the context of a search for cleaner energy sources. When catalyzed by organometallic complexes, the reaction mechanisms currently considered involve the formation of β-BH agostic intermediates. A thorough understanding of these intermediates may constitute a crucial step toward the identification of ideal catalysts. Topological approaches such as QTAIM and ELF revealed to be particularly suitable for the description of β-agostic interactions. When studying model catalysts, accurate theoretical calculations may be carried out. However, for a comparison with experimental data, calculations should also be carried out on large organo-metallic species, often including transition metals belonging to the second or the third row. In such a case, DFT methods are particularly attractive. Unfortunately, triple-ζ all electrons basis sets are not easily available for heavy transition metal elements. Thus, a subtle balance should be reached between the affordable level of calculations and the required accuracy of the electronic description of the systems. Herein we propose the use of B3LYP functional in combination with the LanL2DZ pseudopotential for the metal atom and 6-311++G(2d,2p) basis set for the other atoms, followed by a single point using the DKH2 relativistic Hamiltonian in combination with the B3LYP/DZP-DKH level, as a “minimum level of theory” leading to a consistent topological description of the interaction within the ELF and QTAIM framework, in the context of isolated (gas-phase) group 4 metallocene catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johnson HC, Hooper TN, Weller AS (2015) The catalytic dehydrocoupling of amine–boranes and phosphine–boranes. Top Organomet Chem 49:153–220

    CAS  Google Scholar 

  2. Staubitz A, Robertson APM, Sloan ME, Manners I (2010) Amine- and phosphine-borane adducts: new interest in old molecules. Chem Rev 110:4023–4078

    Article  CAS  Google Scholar 

  3. Alcaraz G, Sabo-Etienne G (2010) Coordination and dehydrogenation of amine–boranes at metal centers. Angew Chem Int Ed 49:7170–7179

    Article  CAS  Google Scholar 

  4. Whittell GR, Manners I (2011) Advances with ammonia-borane: improved recycling. Angew Chem Int Ed 50:10288–10289

    Article  CAS  Google Scholar 

  5. Leitao EM, Jurca T, Manners I (2013) Catalysis in service of main group chemistry offers a versatile approach to p-block molecules and materials. Nat Chem 5:817–829

    Article  CAS  Google Scholar 

  6. Waterman R (2013) Mechanisms of metal-catalyzed dehydrocoupling reactions. Chem Soc Rev 42:5629–5641

    Article  CAS  Google Scholar 

  7. Rossin A, Peruzzini M (2016) Ammonia−borane and amine−borane dehydrogenation mediated by complex metal hydrides. Chem Rev ASAP Article. doi:10.1021/acs.chemrev.6b00043

    Google Scholar 

  8. Kubas GJ (2007) Dihydrogen complexes as prototypes for the coordination chemistry of saturated molecules. PNAS 1047:6901–6907

    Article  Google Scholar 

  9. Brookhart M, Green MHL, Parkin G (2007) Agostic interactions in transition metal compounds. PNAS 104:6908–6914

    Article  CAS  Google Scholar 

  10. Clots E, Eisenstein O (2004) Agostic interactions from a computational perspective: one name, many interpretations. Struct Bond 113:1–36

    Article  Google Scholar 

  11. Brookhart M, Green MLH, Pardy RBA (1983) Two-electron,three-centre carbon–hydrogen–cobalt bonds in the compounds [Co(Z-C5Me4R)(Z-C2H4)(Z-C2H4-m-H)]BF4,R = Me and Et. J Chem Soc Chem Commun 691–693

  12. Brookhart M, Green MLH (1983) Carbon-hydrogen-transition metal bonds. J Organomet Chem 250:395–408

    Article  CAS  Google Scholar 

  13. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  14. Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  15. Matta CF, Boyd RJ (2007) An introduction to the quantum theory of atoms in molecules. In: The quantum theory of atoms in molecules. Wiley, VCH Weinheim

  16. von Frantzius G, Streubel R, Brandhorst K, Grunenberg J (2006) How strong is an agostic bond? Direct assessment of agostic interactions using the generalized compliance matrix. Organometallics 25:118–121

    Article  Google Scholar 

  17. Pantazis DA, McGrady JE, Maseras F, Etienne M (2007) Critical role of the correlation functional in DFT descriptions of an agostic niobium complex. J Chem Theory Comput 4:1329–1336

    Article  Google Scholar 

  18. Lein M (2009) Characterization of agostic interactions in theory and computation. Coord Chem Rev 253:625–634

    Article  CAS  Google Scholar 

  19. Grimme S, Steinmetz M (2013) Effects of London dispersion correction in density. Phys Chem Chem Phys 15:16031–16042

    Article  CAS  Google Scholar 

  20. Eickerling G, Mastalerz R, Herz V, Scherer W, Himmel HJ, Reiher M (2007) Relativistic effects on the topology of the electron density. J Chem Theory Comput 3:2182–2197

    Article  CAS  Google Scholar 

  21. Bučinský L, Kucková L, Malček M, Kožíšek J, Biskupič S, Jayatilaka D, Büchel GE, Arion VB (2014) Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points. J Chem Phys 438:37–47

    Google Scholar 

  22. Bučinský L, Jayatilaka D, Grabowsky S (2016) Importance of relativistic effects and electron correlation in structure factors and electron density of diphenyl mercury and triphenyl bismuth. J Phys Chem A 120:6650–6669

    Article  Google Scholar 

  23. Wolstenholme DJ, Traboulsee KT, Decken A, McGrady CS (2009) Structure and bonding of titanocene amidoborane complexes: a common bonding motif with their β-agostic organometallic counterparts. Organometallics 29:5769–5772

    Article  Google Scholar 

  24. Forster TD, Tuononen HM, Parvez M, Roesler R (2009) Characterization of β-agostic isomers in zirconocene amidoborane complexes. J Am Chem Soc 131:6689–6691

    Article  CAS  Google Scholar 

  25. Helten H, Dutta B, Vance JR, Sloan ME, Haddow MF, Sproules S, Collison D, Whittell GR, Lloyd-Jones GC, Manners I (2013) Paramagnetic titanium(III) and zirconium(III) metallocene complexes as precatalysts for the dehydrocoupling/dehydrogenation of amine-borane. Angew Chem Int Ed 52:437–440

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O,Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision E.01. Gaussian Inc, Wallingford

  27. Zhao Y, Truhlar DG (2011) Applications and validations of the Minnesota density functionals. Cheml Phys Lett 502:1–13

    Article  CAS  Google Scholar 

  28. Toulouse J, Savin A, Flad HJ (2004) Short-range exchange-correlation energy of a uniform electron gas with modified electron–electron interaction. Int J Quantum Chem 100:1047–1056

    Article  CAS  Google Scholar 

  29. Goerigk L (2015) Treating London-dispersion effects with the latest Minnesota density functionals: problems and possible solutions. J Phys Chem Lett 6:3891–3896

    Article  CAS  Google Scholar 

  30. Zhao Y, Truhlar GD (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  31. Modrzejewski M, Chalasinski G, Szczęsniak MM (2014) Range-separated meta-gga functional designed for noncovalent interactions. J Chem Theory Comput 10:4297–4306

    Article  CAS  Google Scholar 

  32. Grimme G (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1:211–228

    Article  CAS  Google Scholar 

  33. Grimme S, Antony J, Ehrlich S (2010) Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  34. Xing YM, Zhang L, Fang DC (2015) DFT studies on the mechanism of palladium(IV)-mediated C–H activation reactions: oxidant effect and regioselectivity. Organometallics 34:770–777

    Article  CAS  Google Scholar 

  35. van der Eide EF, Yang P, Bullock RM (2013) Isolation of two agostic isomers of an organometallic cation: different structures and colors. Angew Chem 125:10380–10384

    Article  Google Scholar 

  36. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101

    Article  Google Scholar 

  37. Perdew PJ (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 34:7406

    Article  Google Scholar 

  38. Staroverov NV, Scuseria GE, Tao JM, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119:12129

    Article  CAS  Google Scholar 

  39. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  41. Lee C, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B: 785–789

  42. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phy Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1997) Errata: Generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  44. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6169

    Article  CAS  Google Scholar 

  45. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401

    Article  Google Scholar 

  46. Vydrov OA, Scuseria GE (2006) Assessment of a long range corrected hybrid functional. J Chem Phys 125:234109

    Article  Google Scholar 

  47. Vydrov OA, Heyd J, Krukau A, Scuseria GE (2006) Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J Chem Phys 125:074106

    Article  Google Scholar 

  48. Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126:154109

    Article  Google Scholar 

  49. Neto AC, Muniz EP, Centoducatte R, Jorge FE (2005) Gaussian basis sets for correlated wave functions, hydrogen, helium, first- and second-row atoms. J Mol Struct 718:219–224

    Article  Google Scholar 

  50. Camiletti GG, Machado SF, Jorge FE (2008) Gaussian basis set of double zeta quality for atoms K through Kr: application in DFT calculations of molecular properties. J Comp Chem 29:2434–2444

    Article  CAS  Google Scholar 

  51. Barros CL, de Oliveira PJP, Jorge FE, Canal Neto A, Campos M (2010) Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol Phys 108:1965–1972

    Article  CAS  Google Scholar 

  52. Barbieri PL, Fantin PA, Jorge FE (2006) Gaussian basis sets of triple and quadruple zeta valence quality for correlated wave functions. Mol Phys 104:2945–2954

    Article  CAS  Google Scholar 

  53. Machado SF, Camiletti GG, Canal Neto A, Jorge FE, Jorge RS (2009) Gaussian basis set of triple zeta valence quality for the atoms from K to Kr: application in DFT and CCSD(T) calculations of molecular properties. Mol Phys 107:1713–1727

    Article  CAS  Google Scholar 

  54. Campos CT, Jorge EF (2013) Triple zeta quality basis sets for atoms Rb through Xe: application in CCSD(T) atomic and molecular property calculations. Mol Phys 111:167–173

    Article  CAS  Google Scholar 

  55. Jorge EF, Canal Neto A, Camiletti GG, Machado SF (2009) Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: estimating scalar relativistic effects of some atomic and molecular properties. J Chem Phys 130:064108

    Article  CAS  Google Scholar 

  56. Canal Neto A, Jorge EF (2013) All-electron double zeta basis sets for the most fifth-row atoms: application in DFT spectroscopic constant calculations. Chem Phys Lett 582:158–162

    Article  CAS  Google Scholar 

  57. Barros CL, de Oliveira PJP, Jorge FE, Canal Neto A, Campos M (2010) Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties Gaussian basis set of double zeta quality for atoms Rb through Xe: application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol Phys 108:1965–1972

    Article  CAS  Google Scholar 

  58. Jorge FE, Canal Neto A, Camiletti GG, Machado SF (2009) Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: estimating scalar relativistic effects of some atomic and molecular properties. J Chem Phys 130:064108

    Article  CAS  Google Scholar 

  59. Ponec R, Bučinský L, Gatti C (2010) Relativistic effects on metal−metal bonding: comparison of the performance of ECP and scalar DKH description on the picture of metal−metal bonding in Re2Cl8 2−. J Chem Theory Comput 6:3113–3121

    Article  CAS  Google Scholar 

  60. Savin A, Becke AD, Flad J, Nesper R, Preuss H, von Schnering HG (1991) Angew Chern Inr Ed Engl 30:409–412

    Article  Google Scholar 

  61. Fuentealba P, Chamorro E, Santos JC (2007) Understanding and using the electron localization function. In: Toro-Labbé (ed.) Theoretical aspects of chemical reactivity. . Elsevier, Amsterdam

  62. Tognetti V, Joubert L, Cortona P, Adamo C (2009) Toward a combined DFT/QTAIM description of agostic bonds: the critical case of a Nb(III) complex. J Phys Chem A 113:12322–12327

    Article  CAS  Google Scholar 

  63. Tognetti V, Joubert L, Raucoules R, de Bruin T, Adamo C (2012) Characterizing agosticity using the quantum theory of atoms in molecules: bond critical points and their local properties. J Phys Chem A 116:5472–5479

    Article  CAS  Google Scholar 

  64. Tognetti V, Joubert L (2011) On the influence of density functional approximations on some local bader’s atoms-in-molecules properties. J Phys Chem A 115:5505–5515

    Article  CAS  Google Scholar 

  65. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604

    Article  CAS  Google Scholar 

  66. Keith TA (2014) AIMAll Version 14.10.27. TK Gristmill Software, Overland Park. aim.tkgristmill.com

  67. Zins EL, Silvi B, Alikhani ME (2015) Activation of C-H and B-H bonds through agostic bonding: an ELF/QTAIM insight. Phys Chem Chem Phys 27:9258–9281

    Article  Google Scholar 

  68. Jablonski M (2015) QTAIM-based comparison of agostic bonds and intramolecular charge-inverted hydrogen bonds. J Phys Chem A 119:4993–5008

    Article  CAS  Google Scholar 

  69. Pun D, Lobkovsky E, Chirik PJ (2007) Amineborane dehydrogenation promoted by isolable zirconium sandwich, titanium sandwich and N2 complexes. Chem Commun 31:3297–3299

    Article  Google Scholar 

  70. Jaska CA, Manners I (2004) Heterogeneous or homogeneous catalysis, mechanistic studies of the rhodium-catalyzed dehydrocoupling of amine-borane and phosphine-borane adducts. J Am Chem Soc 126:9776–9785

    Article  CAS  Google Scholar 

  71. Sloan ME, Staubitz A, Clark TJ, Russell CA, Lloyd-Jones GC, Manners I (2010) Homogeneous catalytic dehydrocoupling/dehydrogenation of amine-borane adducts by early transition metal, group 4 metallocene complexes. J Am Chem Soc 132:3831–3841

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Esmaïl Alikhani.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zins, EL. & Alikhani, M.E. Characterization of B-H agostic compounds involved in the dehydrogenation of amine-boranes by group 4 metallocenes. J Mol Model 22, 294 (2016). https://doi.org/10.1007/s00894-016-3165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3165-z

Keywords

Navigation