Skip to main content
Log in

DFT/TDDFT investigation on the chemical reactivities, aromatic properties, and UV–Vis absorption spectra of 1-butoxy-4-methoxybenzenepillar[5]arene constitutional isomers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We investigate the chemical reactivities, aromatic properties, and UV–Vis absorption spectra of four constitutional isomers of 1-butoxy-4-methoxybenzenepillar[5]arene with the DFT and TDDFT methods. These characteristics in the gas and solvent phases are discussed on the basis of electronic energy, the highest occupied molecular orbital energy, electrophilicity, global hardness, chemical potential, and nucleus-independent chemical shift. The out-of-plane component of the NICS values reveals that there is a great contrast between aromatic rings of the isomer and benzene. The most intense wavelengths of BMpillar[5]arenes are all made up of delocalized-delocalized ππ* transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ogoshi T, Kanai S, Fujinami S, Yamagishi TA, Nakamoto Y (2008) para-Bridged symmetrical pillar [5] arenes: their Lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc 130(15):5022–5023

    Article  CAS  Google Scholar 

  2. Shu X, Chen S, Li J, Chen Z, Weng L, Jia X, Li C (2012) Highly effective binding of neutral dinitriles by simple pillar [5] arenes. Chem Commun 48(24):2967–2969

    Article  CAS  Google Scholar 

  3. Holler M, Allenbach N, Sonet J, Nierengarten JF (2012) The high yielding synthesis of pillar [5] arenes under Friedel–Crafts conditions explained by dynamic covalent bond formation. Chem Commun 48(20):2576–2578

    Article  CAS  Google Scholar 

  4. Li C, Chen S, Li J, Han K, Xu M, Hu B, Jia X (2011) Novel neutral guest recognition and interpenetrated complex formation from pillar [5] arenes. Chem Commun 47(40):11294–11296

    Article  CAS  Google Scholar 

  5. Sun YL, Yang YW, Chen DX, Wang G, Zhou Y, Wang CY, Stoddart JF (2013) Mechanized silica nanoparticles based on pillar [5] arenes for on-command cargo release. Small 9(19):3224–3229

    CAS  Google Scholar 

  6. Yao Y, Xue M, Zhang Z, Zhang M, Wang Y, Huang F (2013) Gold nanoparticles stabilized by an amphiphilic pillar [5] arene: preparation, self-assembly into composite microtubes in water and application in green catalysis. Chem Sci 4(9):3667–3672

    Article  CAS  Google Scholar 

  7. Han C, Yu G, Zheng B, Huang F (2012) Complexation between pillar [5] arenes and a secondary ammonium salt. Org Lett 14(7):1712–1715

    Article  CAS  Google Scholar 

  8. Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W, Pei Z (2014) Cationic vesicles based on amphiphilic pillar [5] arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. Angew Chem Int Ed 53(48):13126–13130

    Article  CAS  Google Scholar 

  9. Chen DX, Sun YL, Zhang Y, Cui JY, Shen FZ, Yang YW (2013) Supramolecular self-assembly and photophysical properties of pillar [5] arene-stabilized CdTe quantum dots mediated by viologens. RSC Adv 3(17):5765–5768

    Article  CAS  Google Scholar 

  10. Tan LL, Li H, Qiu YC, Chen DX, Wang X, Pan RY, Yang YW (2015) Stimuli-responsive metal–organic frameworks gated by pillar [5] arene supramolecular switches. Chem Sci 6(3):1640–1644

    Article  CAS  Google Scholar 

  11. Wu YL, Li J (2009) Synthesis of supramolecular nanocapsules based on threading of multiple cyclodextrins over polymers on gold nanoparticles. Angew Chem Int Ed 48(21):3842–3845

    Article  CAS  Google Scholar 

  12. Kohsaka Y, Koyama Y, Takata T (2011) Graft polyrotaxanes: a new class of graft copolymers with mobile graft chains. Angew Chem Int Ed 50(44):10417–10420

    Article  CAS  Google Scholar 

  13. Yu S, Zhang Y, Wang X, Zhen X, Zhang Z, Wu W, Jiang X (2013) Synthesis of paclitaxel-conjugated β-cyclodextrin polyrotaxane and its antitumor activity. Angew Chem Int Ed 52(28):7272–7277

    Article  CAS  Google Scholar 

  14. Omorodion H, Twamley B, Platts JA, Baker RJ (2015) Further evidence on the importance of fluorous–fluorous interactions in supramolecular chemistry: a combined structural and computational study. Cryst Growth Des 15(6):2835–2841

    Article  CAS  Google Scholar 

  15. Cragg PJ, Sharma K (2012) Pillar [5] arenes: fascinating cyclophanes with a bright future. Chem Soc Rev 41(2):597–607

    Article  CAS  Google Scholar 

  16. Guan Y, Ni M, Hu X, Xiao T, Xiong S, Lin C, Wang L (2012) Pillar [5] arene-based polymeric architectures constructed by orthogonal supramolecular interactions. Chem Commun 48(68):8529–8531

    Article  CAS  Google Scholar 

  17. Strutt NL, Forgan RS, Spruell JM, Botros YY, Stoddart JF (2011) Monofunctionalized pillar [5] arene as a host for alkanediamines. J Am Chem Soc 133(15):5668–5671

    Article  CAS  Google Scholar 

  18. Shamagsumova RV, Shurpik DN, Padnya PL, Stoikov II, Evtugyn GA (2015) Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar [5] arene. Talanta 144:559–568

    Article  CAS  Google Scholar 

  19. Zhou SY, Song N, Liu SX, Chen DX, Jia Q, Yang YW (2014) Separation and preconcentration of gold and palladium ions with a carboxylated pillar [5] arene derived sorbent prior to their determination by flow injection FAAS. Microchim Acta 181(13-14):1551–1556

    Article  CAS  Google Scholar 

  20. Zhou J, Chen M, Xie J, Diao G (2013) Synergistically enhanced electrochemical response of host–guest recognition based on ternary nanocomposites: reduced graphene oxide-amphiphilic pillar [5] arene-gold nanoparticles. ACS Appl Mater Interfaces 5(21):11218–11224

    Article  CAS  Google Scholar 

  21. Nierengarten I, Nothisen M, Sigwalt D, Biellmann T, Holler M, Remy JS, Nierengarten JF (2013) Polycationic pillar [5] arene derivatives: interaction with DNA and biological applications. Chem Eur J 19(51):17552–17558

    Article  CAS  Google Scholar 

  22. Jie K, Zhou Y, Yao Y, Shi B, Huang F (2015) CO2-responsive pillar [5] arene-based molecular recognition in water: establishment and application in gas-controlled self-assembly and release. J Am Chem Soc 137(33):10472–10475

    CAS  Google Scholar 

  23. Dong S, Zheng B, Yao Y, Han C, Yuan J, Antonietti M, Huang F (2013) LCST-type phase behavior induced by pillar [5] arene/ionic liquid host–guest complexation. Adv Mater 25(47):6864–6867

    Article  CAS  Google Scholar 

  24. Peerannawar SR, Gejji SP (2013) Theoretical investigations on vibrational spectra of pillar [5] arene-bis (pyridinium) complexes. Spectrochim Acta A Mol Biomol Spectrosc 104:368–376

    Article  CAS  Google Scholar 

  25. Inoue R, Hasegawa M, Nishinaga T, Yoza K, Mazaki Y (2015) Efficient synthesis, structure, and complexation studies of electron-donating thiacalix [n] dithienothiophene. Angew Chem Int Ed 54(9):2734–2738

    Article  CAS  Google Scholar 

  26. Hasegawa M, Honda Y, Inoue R, Mazaki Y (2016) Straightforward synthesis, electrochemical properties, and gel formation of thiacalix [n] thiophenes. Chem Asian J 11(5):674–677

    Article  CAS  Google Scholar 

  27. Nguyen QT, Oh DW, Kim W, Sahoo SK, Choi HJ (2015) Self-folding deep cavitand with acetamidoquinoxaline flaps: hindered ring inversion of cyclohexane in a confined cavity by CH–π interaction. Asian J Org Chem 4(8):729–732

    Article  Google Scholar 

  28. Trofymchuk OS, Ortega DE, Gutiérrez-Oliva S, Rojas RS, Toro-Labbé A (2015) The performance of methallyl nickel complexes and boron adducts in the catalytic activation of ethylene: a conceptual DFT perspective. J Mol Model 21(9):1–10

    Article  CAS  Google Scholar 

  29. Pérez P, Yepes D, Jaque P, Chamorro E, Domingo LR, Rojas RS, Toro-Labbé A (2015) A computational and conceptual DFT study on the mechanism of hydrogen activation by novel frustrated Lewis pairs. Phys Chem Chem Phys 17(16):10715–10725

    Article  Google Scholar 

  30. Domingo LR, Sáez JA, & Arnó M (2014) A DFT study on the NHC catalysed Michael addition of enols to α, β-unsaturated acyl-azoliums. A base catalysed C-C bond-formation step. Organic & biomolecular chemistry 12(6): 895–904

  31. Brabec J, Lin L, Shao M, Govind N, Yang C, Saad Y, Ng EG (2015) Efficient algorithms for estimating the absorption spectrum within linear response TDDFT. J Chem Theory Comput 11(11):5197–5208

    Article  CAS  Google Scholar 

  32. Marenich AV, Cramer CJ, Truhlar DG (2014) Electronic absorption spectra and solvatochromic shifts by the vertical excitation model: solvated clusters and molecular dynamics sampling. J Phys Chem B 119(3):958–967

    Article  Google Scholar 

  33. Burgess RW, Keast VJ (2014) TDDFT study of the optical absorption spectra of bare gold clusters. J Phys Chem C 118(6):3194–3201

    Article  CAS  Google Scholar 

  34. Weerawardene KDM, Aikens CM (2015) Strong tunable visible absorption predicted for polysilo-acenes using TDDFT calculations. J Phys Chem Lett 6(17):3341–3345

    Article  CAS  Google Scholar 

  35. Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13(8):3664–3670

    Article  CAS  Google Scholar 

  36. Zhang Z, Luo Y, Xia B, Han C, Yu Y, Chen X, Huang F (2011) Four constitutional isomers of BMpillar[5]arene: synthesis, crystal structures and complexation with n-octyltrimethyl ammonium hexafluorophosphate. Chem Commun 47(8):2417–2419

    Article  CAS  Google Scholar 

  37. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122(9):2010–2018

    Article  CAS  Google Scholar 

  38. Yang W, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci 82(20):6723–6726

    Article  CAS  Google Scholar 

  39. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1(1):104–113

    Article  Google Scholar 

  40. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  41. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Article  Google Scholar 

  42. De Sousa SM, Fernandes SA, De Almeida WB, Guimarães L, Abranches PA, Varejão EV, Nascimento CS (2016) Theoretical investigation on the molecular inclusion process of prilocaine into p-sulfonic acid calix [6] arene. Chem Phys Lett 646:52–55

    Article  Google Scholar 

  43. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Hommes NJVE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118(26):6317–6318

    Article  CAS  Google Scholar 

  44. Bühl M, van Wüllen C (1995) Computational evidence for a new C 84 isomer. Chem Phys Lett 247(1):63–68

    Article  Google Scholar 

  45. Corminboeuf C, Heine T, Seifert G, von Ragué Schleyer P, Weber J (2004) Induced magnetic fields in aromatic [n]-annulenes—interpretation of NICS tensor components. Phys Chem Chem Phys 6(2):273–276

    Article  CAS  Google Scholar 

  46. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2006) Which NICS aromaticity index for planar π rings is best? Org Lett 8(5):863–866

    Article  CAS  Google Scholar 

  47. Stanger A (2006) Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity. J Org Chem 71(3):883–893

    Article  CAS  Google Scholar 

  48. London F (1937) Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J Phys Radium 8(10):397–409

    Article  CAS  Google Scholar 

  49. Ditchfield R (1972) Molecular orbital theory of magnetic shielding and magnetic susceptibility. J Chem Phys 56(11):5688–5691

    Article  CAS  Google Scholar 

  50. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112(23):8251–8260

    Article  CAS  Google Scholar 

  51. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  52. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396

    Article  CAS  Google Scholar 

  53. Frisch M, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Nakatsuji H (2009) Gaussian 09, revision A. 02; Gaussian, Inc. Wallingford

  54. Pearson RG (1993) The principle of maximum hardness. Acc Chem Res 26(5):250–255

    Article  CAS  Google Scholar 

  55. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113(5):1854–1855

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ren, S. DFT/TDDFT investigation on the chemical reactivities, aromatic properties, and UV–Vis absorption spectra of 1-butoxy-4-methoxybenzenepillar[5]arene constitutional isomers. J Mol Model 22, 209 (2016). https://doi.org/10.1007/s00894-016-3076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3076-z

Keywords

Navigation