Skip to main content

Advertisement

Log in

Free energy calculation provides insight into the action mechanism of selective PARP-1 inhibitor

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Selective poly (ADP-ribose) polymerase (PARP)-1 inhibitor represents promising therapy against cancers with a good balance between efficacy and safety. Owing to the conserved structure between PARP-1 and PARP-2, most of the clinical and experimental drugs show equivalent inhibition against both targets. Most recently, it’s disclosed a highly selective PARP-1 inhibitor (NMS-P118) with promising pharmacokinetic properties. Herein, we combined molecular simulation with free energy calculation to gain insights into the selective mechanism of NMS-P118. Our results suggest the reduction of binding affinity for PARP-2 is attributed to the unfavorable conformational change of protein, which is accompanied by a significant energy penalty. Alanine-scanning mutagenesis study further reveals the important role for a tyrosine residue of donor loop (Tyr889PARP-1 and Tyr455PARP-2) in contributing to the ligand selectivity. Retrospective structural analysis indicates the ligand-induced movement of Tyr455PARP-2 disrupts the intra-molecule hydrogen bonding network, which partially accounts for the “high-energy” protein conformation in the presence of NMS-P118. Interestingly, such effect isn’t observed in other non-selective PARP inhibitors including BMN673 and A861695, which validates the computational prediction. Our work provides energetic insight into the subtle variations in the crystal structures and could facilitate rational design of new selective PARP inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vyas S, Chang P (2014) New PARP targets for cancer therapy. Nat Rev Cancer 14:502–509

    Article  CAS  Google Scholar 

  2. Lupo B, Trusolino L (1846) Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited. Biochim Biophys Acta 2014:201–215

    Google Scholar 

  3. Sunderland PT, Woon EC, Dhami A, Bergin AB, Mahon MF, Wood PJ, Jones LA, Tully SR, Lloyd MD, Thompson AS, Javaid H, Martin NM, Threadgill MD (2011) 5-Benzamidoisoquinolin-1-ones and 5-(omega-carboxyalkyl)isoquinolin-1-ones as isoform-selective inhibitors of poly(ADP-ribose) polymerase 2 (PARP-2). J Med Chem 54:2049–2059

    Article  CAS  Google Scholar 

  4. Menear KA, Adcock C, Boulter R, Cockcroft XL, Copsey L, Cranston A, Dillon KJ, Drzewiecki J, Garman S, Gomez S, Javaid H, Kerrigan F, Knights C, Lau A, Loh VM Jr, Matthews IT, Moore S, O’Connor MJ, Smith GC, Martin NM (2008) 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin- 1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51:6581–6591

    Article  CAS  Google Scholar 

  5. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, Derksen PW, de Bruin M, Zevenhoven J, Lau A, Boulter R, Cranston A, O’Connor MJ, Martin NM, Borst P, Jonkers J (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A 105:17079–17084

    Article  CAS  Google Scholar 

  6. Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, Bontcheva-Diaz VD, Cox BF, DeWeese TL, Dillehay LE, Ferguson DC, Ghoreishi-Haack NS, Grimm DR, Guan R, Han EK, Holley-Shanks RR, Hristov B, Idler KB, Jarvis K, Johnson EF, Kleinberg LR, Klinghofer V, Lasko LM, Liu X, Marsh KC, McGonigal TP, Meulbroek JA, Olson AM, Palma JP, Rodriguez LE, Shi Y, Stavropoulos JA, Tsurutani AC, Zhu GD, Rosenberg SH, Giranda VL, Frost DJ (2007) ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13:2728–2737

    Article  CAS  Google Scholar 

  7. Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, Wang B, Lord CJ, Post LE, Ashworth A (2013) BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 19:5003–5015

    Article  CAS  Google Scholar 

  8. Papeo G, Posteri H, Borghi D, Busel AA, Caprera F, Casale E, Ciomei M, Cirla A, Corti E, D’Anello M, Fasolini M, Forte B, Galvani A, Isacchi A, Khvat A, Krasavin MY, Lupi R, Orsini P, Perego R, Pesenti E, Pezzetta D, Rainoldi S, Riccardi-Sirtori F, Scolaro A, Sola F, Zuccotto F, Felder ER, Donati D, Montagnoli A (2015) Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoind ole-4-carboxamide (NMS-P118): a potent, orally available, and highly selective PARP-1 inhibitor for cancer therapy. J Med Chem 58:6875–6898

  9. Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39:8–24

    Article  CAS  Google Scholar 

  10. Yelamos J, Farres J, Llacuna L, Ampurdanes C, Martin-Caballero J (2011) PARP-1 and PARP-2: new players in tumour development. Am J Cancer Res 1:328–346

    CAS  Google Scholar 

  11. Yelamos J, Schreiber V, Dantzer F (2008) Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med 14:169–178

    Article  CAS  Google Scholar 

  12. Farres J, Llacuna L, Martin-Caballero J, Martinez C, Lozano JJ, Ampurdanes C, Lopez-Contreras AJ, Florensa L, Navarro J, Ottina E, Dantzer F, Schreiber V, Villunger A, Fernandez-Capetillo O, Yelamos J (2015) PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors. Cell Death Differ 22:1144–1157

    Article  CAS  Google Scholar 

  13. Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell AG, Pol E, Frostell A, Ekblad T, Oncu D, Kull B, Robertson GM, Pellicciari R, Schuler H, Weigelt J (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 30:283–288

    Article  CAS  Google Scholar 

  14. Papeo G, Avanzi N, Bettoni S, Leone A, Paolucci M, Perego R, Quartieri F, Riccardi-Sirtori F, Thieffine S, Montagnoli A, Lupi R (2014) Insights into PARP inhibitors’ selectivity using fluorescence polarization and surface plasmon resonance binding assays. J Biomol Screen 19:1212–1219

    Article  Google Scholar 

  15. Ishida J, Yamamoto H, Kido Y, Kamijo K, Murano K, Miyake H, Ohkubo M, Kinoshita T, Warizaya M, Iwashita A, Mihara K, Matsuoka N, Hattori K (2006) Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modeling. Bioorg Med Chem 14:1378–1390

    Article  CAS  Google Scholar 

  16. Hattori K, Kido Y, Yamamoto H, Ishida J, Iwashita A, Mihara K (2007) Rational design of conformationally restricted quinazolinone inhibitors of poly(ADP-ribose)polymerase. Bioorg Med Chem Lett 17:5577–5581

    Article  CAS  Google Scholar 

  17. Eltze T, Boer R, Wagner T, Weinbrenner S, McDonald MC, Thiemermann C, Burkle A, Klein T (2008) Imidazoquinolinone, imidazopyridine, and isoquinolindione derivatives as novel and potent inhibitors of the poly(ADP-ribose) polymerase (PARP): a comparison with standard PARP inhibitors. Mol Pharmacol 74:1587–1598

    Article  CAS  Google Scholar 

  18. Barillari C, Taylor J, Viner R, Essex JW (2007) Classification of water molecules in protein binding sites. J Am Chem Soc 129:2577–2587

    Article  CAS  Google Scholar 

  19. Huang N, Shoichet BK (2008) Exploiting ordered waters in molecular docking. J Med Chem 51:4862–4865

    Article  CAS  Google Scholar 

  20. Massova I, Kollman P (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov Des 18:113–135

    Article  CAS  Google Scholar 

  21. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  22. Lefevre F, Remy MH, Masson JM (1997) Alanine-stretch scanning mutagenesis: a simple and efficient method to probe protein structure and function. Nucleic Acids Res 25:447–448

    Article  CAS  Google Scholar 

  23. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121:8133–8143

    Article  CAS  Google Scholar 

  24. Jacobson MP, Kaminski GA, Friesner RA, Rapp CS (2002) Force field validation using protein side chain prediction. J Phys Chem B 106:11673–11680

    Article  CAS  Google Scholar 

  25. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367

    Article  CAS  Google Scholar 

  26. Li X, Jacobson MP, Friesner RA (2004) High-resolution prediction of protein helix positions and orientations. Proteins 55:368–382

    Article  CAS  Google Scholar 

  27. Cao R, Liu M, Yin M, Liu Q, Wang Y, Huang N (2012) Discovery of novel tubulin inhibitors via structure-based hierarchical virtual screening. J Chem Inf Model 52:2730–2740

    Article  CAS  Google Scholar 

  28. Cao R, Huang N, Wang Y (2014) Evaluation and application of MD-PB/SA in structure-based hierarchical virtual screening. J Chem Inf Model 54:1987–1996

    Article  CAS  Google Scholar 

  29. Cao R, Wang Y (2015) Predicting molecular targets for small-molecule drugs with a ligand-based interaction fingerprint approach. Chem Med Chem

  30. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  31. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides? J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  32. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R. Free energy calculation provides insight into the action mechanism of selective PARP-1 inhibitor. J Mol Model 22, 74 (2016). https://doi.org/10.1007/s00894-016-2952-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2952-x

Keywords

Navigation