Skip to main content
Log in

Improving protein-ligand docking with flexible interfacial water molecules using SWRosettaLigand

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Computational protein-ligand docking is of great importance in drug discovery and design. Conformational changes greatly affect the results of protein-ligand docking, especially when water molecules take part in mediating protein ligand interactions or when large conformational changes are observed in the receptor backbone interface. We have developed an improved protocol, SWRosettaLigand, based on the RosettaLigand protocol. This approach incorporates the flexibility of interfacial water molecules and modeling of the interface of the receptor into the original RosettaLigand. In a coarse sampling step, SWRosettaLigand pre-optimizes the initial position of the water molecules, docks the ligand to the receptor with explicit water molecules, and minimizes the predicted structure with water molecules. The receptor backbone interface is treated as a loop and perturbed and refined by kinematic closure, or cyclic coordinate descent algorithm, with the presence of the ligand. In two cross-docking test sets, it was identified that for 8 out of 14, and 16 out of 22, test instances, the top-ranked structures by SWRosettaLigand achieved better accuracy than other protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rarey M (2004) in Bioinformatics - From Genomes to Drugs. Wiley, pp 315–360. doi:10.1002/3527601481.ch7

  2. Kuntz ID, Blaney JM, Langridge R, Ferrin TE (1982) J Mol Biol 161 (2):269. doi:10.1016/0022-2836(82)90153-X

    Article  CAS  Google Scholar 

  3. Vajda S, Weng Z, Rosenfeld R, DeLisi C (1994) Biochemistry 33(47):13977. doi:10.1021/bi00251a004

    Article  CAS  Google Scholar 

  4. Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL (2004) J Med Chem 47(12):3032. doi:10.1021/jm030489h

    Article  CAS  Google Scholar 

  5. Teague SJ (2003) NatN Reva Drug Discovt 2(7):527. doi:10.1038/nrd1129

    Article  CAS  Google Scholar 

  6. Luitz M, Zacharias M (2014) J Chem Inf Model. doi:10.1021/ci500296f

  7. Hummer G (2010) Nat Chem 2(11):906. doi:10.1038/nchem.885

    Article  CAS  Google Scholar 

  8. Cortopassi WA, Feital RJC, Medeiros DJ, Guizado TRC, França TCC, Pimentel AS (2012) Mol Simul 38:1132. doi:10.1080/08927022.2012.696113

    Article  CAS  Google Scholar 

  9. Grewal BK, Bhat J, Sobhia ME (2014) Expert Opin Ther Targets 19(1):13. doi:10.1517/14728222.2014.975795

    Article  Google Scholar 

  10. Vogt AD, Cera ED (2013) Biochemistry 52(34):5723. doi:10.1021/bi400929b

    Article  CAS  Google Scholar 

  11. Subramanian J, Sharma S, B-Rao C (2008) ChemMedChem 3(2):336. doi:10.1002/cmdc.200700255

    Article  CAS  Google Scholar 

  12. Subramanian J, Sharma S, B-Rao C (2006) J Med Chem 49(18):5434. doi:10.1021/jm060172s

    Article  CAS  Google Scholar 

  13. Kumar A, Zhang KYJ (2013) J Chem Inf Model 53(8):1880. doi:10.1021/ci400052w

    Article  CAS  Google Scholar 

  14. Wong SE, Lightstone FC (2011) Expert Opin Drug Discovery 6(1):65. doi:10.1517/17460441.2011.534452

    Article  CAS  Google Scholar 

  15. Lu Y, Wang R, Yang CY, Wang S (2007) J Chem Inf Model 47(2):668. doi:10.1021/ci6003527

    Article  CAS  Google Scholar 

  16. Corbeil CR, Moitessier N (2009) J Chem Inf Model 49(4):997. doi:10.1021/ci8004176

    Article  CAS  Google Scholar 

  17. Lu SY, Jiang YJ, Lv J, Zou JW, Wu TX (2011) J Comput Chem 32(9):1907. doi:10.1002/jcc.21775

    Article  CAS  Google Scholar 

  18. Thilagavathi R, Mancera R (2010) J Chem Inf Model 50(3):415. doi:10.1021/ci900345h

    Article  CAS  Google Scholar 

  19. Santos R, Hritz J, Oostenbrink C, J Chem Inf Model (2009) 50(1):146. doi:10.1021/ci900293e

  20. Imai T, Hiraoka R, Kovalenko A, Hirata F (2007) Proteins 66 (4):804. doi:10.1002/prot.21311

    Article  CAS  Google Scholar 

  21. Li Z, Lazaridis T (2005) J Phys Chem B 109(1):662. doi:10.1021/jp0477912

    Article  CAS  Google Scholar 

  22. Carugo O, Argos P (1998) Proteins: Struct Funct Bioinf 31 (2):201. doi:10.1002/(SICI)1097-0134(19980501)31:2<201::AIDPROT9>3.0.CO;2-O

  23. Kadirvelraj R, Foley BL, Dyekjaer JD, Woods RJ (2008) J Am Chem Soc 130(50):16933. doi:10.1021/ja8039663

    Article  CAS  Google Scholar 

  24. Garciá-Sosa AT, Mancera RL, Dean PM (2003) J Mol Model 9(3):172. doi:10.1007/s00894-003-0129-x

    Article  Google Scholar 

  25. Roberts BC, Mancera RL (2008) J Chem Inf Model 48(2):397. doi:10.1021/ci700285e

    Article  CAS  Google Scholar 

  26. Österberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) 46(1):34. doi:10.1002/prot.10028

  27. Verdonk ML, Chessari G, Cole JC, Hartshorn MJ, Murray CW, Nissink JWM, Taylor RD, Taylor R (2005) J Med Chem 48(20):6504. doi:10.1021/jm050543p

    Article  CAS  Google Scholar 

  28. Rarey M, Kramer B, Lengauer T (1999) Proteins: Struct Funct Bioinf 34 (1):17. doi:10.1002/(SICI)1097-0134(19990101)34:1<17::AID-PROT3>3.0.CO;2-1/pdf

  29. Bren U, Janežič D (2012) J Chem Phys 137(2):024108. doi:10.1063/1.4732514

  30. Cherfils J, Bizebard T, Knossow M, Janin J (1994) Proteins: Struct Funct Bioinf 18(1):8. doi:10.1002/prot.340180104

    Article  CAS  Google Scholar 

  31. Graaf CD, Pospisil P, Pos W, Folkers G, Vermeulen NPE (2005) J Med Chem 48(7):2308. doi:10.1021/jm049650u

    Article  Google Scholar 

  32. Davis I W, Baker D (2009). J Mol Biol 385(2):381. doi:10.1016/j.jmb.2008.11.010

    Article  CAS  Google Scholar 

  33. Xu W, Lü Q, Wu H, Quan L (2012) ACTA BIOPHYSICA SINICA 28(12):983

    Article  CAS  Google Scholar 

  34. Shoemaker BA, Zhang D, Thangudu RR, Tyagi M, Fong JH, Marchler-Bauer A, Bryant SH, Madej T, Panchenko AR (2010) Nucleic Acids Res 38(suppl 1):D518. doi:10.1093/nar/gkp842

    Article  CAS  Google Scholar 

  35. Neuvirth H, Heinemann U, Birnbaum D, Tishby N, Schreiber G (2007) Nucleic Acids Res. 35 (suppl 2):W543. doi:10.1093/nar/gkm301

    Article  Google Scholar 

  36. Volkamer A, Kuhn D, Rippmann F, Rarey M (2012) Bioinformatics 28(15):2074. doi:10.1093/bioinformatics/bts310

    Article  CAS  Google Scholar 

  37. Zhang Z, Li Y, Lin B, Schroeder M, Huang B (2011) Bioinformatics 27(15):2083. doi:10.1093/bioinformatics/btr331

    Article  CAS  Google Scholar 

  38. Goodman N (1963) Ann Math Stat 34(1):152. http://www.jstor.org/stable/2991290

    Article  Google Scholar 

  39. Li Z, Lazaridis T (2003) J Am Chem Soc 125(22):6636. doi:10.1021/ja0299203

    Article  CAS  Google Scholar 

  40. Mandell DJ, Coutsias EA, Kortemme T (2009) Nat Methods 6 6(8):551. doi:10.1038/nmeth0809-551

    Article  Google Scholar 

  41. Canutescu AA, Dunbrack RL (2003) Protein Sci 12(5):963. doi:10.1110/ps.0242703

    Article  CAS  Google Scholar 

  42. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30(16):2785. doi:10.1002/jcc.21256

    Article  CAS  Google Scholar 

  43. Schüttelkopf AW, van Aalten DMF (2004) Acta Crystallogr D Biol Crystallogr 60(8):1355. doi:10.1107/S0907444904011679

    Article  Google Scholar 

  44. van Gunsteren WF, Billeter S, Eising A, Hünenberger PH, Krüger P, Mark AE, Scott W, Tironi IG (1996)

  45. Daura X, Mark AE, van Gunsteren WF (1998) J Comput Chem 19 (5):535. doi:10.1002/(SICI)1096-987X(19980415)19:5<535::AID-JCC6>3.0.CO;2-N

  46. Weinstein H, Topiol S, Osman R (1981) In Intermolecular forces, The Jerusalem symposia on quantum chemistry and biochemistry. In: Pullman B (ed). doi:10.1007/978-94-015-7658-1, vol 14. Springer, Netherlands, pp 383–396

  47. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81 (8):3684. doi:10.1063/1.448118

  48. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14(1):33. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  49. DeLano WL (2009) http://www.pymol.org/

  50. Zhou J, Yan W, Hu G, Shen B (2014) Proteins: Struct Funct Bioinf 82(4):556. doi:10.1002/prot.24421

Download references

Acknowledgments

The authors thank the Rosetta developers for their great help. Thanks to Wei Yang for his help in carrying out MD simulations. Supported by the National Science Foundation of China under the grant number 61170125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xu, W. & Lü, Q. Improving protein-ligand docking with flexible interfacial water molecules using SWRosettaLigand. J Mol Model 21, 294 (2015). https://doi.org/10.1007/s00894-015-2834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2834-7

Keywords

Navigation