Skip to main content
Log in

Parameter determination procedure for extended Hückel approximation and its application for solid-state electrolytes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A determination procedure of transferable tight-binding parameters of extended Hückel approximation with charge self-consistency is explained, which is applicable to both molecules and crystalline solids. The parameters are adjusted by optimizing evaluation functions, compared with reference results of energy levels or band structure calculated by, for example, the density functional theory. By introducing the evaluation function, the automatic optimization of the parameters for small molecules and clusters is achieved, which makes it easy to determine an accurate parameter set and a wide application of the TB scheme. A practical procedure of parameter optimization is demonstrated for solid-state electrolytes of Li4GeS4 and Li3PS4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. See a review, Thiel, W (2014) WIREs. Comput Mol Sci 4:145, and references therein.

  2. Hoffmann R (1963) J Chem Phys 39:1397

    Article  CAS  Google Scholar 

  3. Hoffmann R (1964) J Chem Phys 40:2474

    Article  CAS  Google Scholar 

  4. Hoffmann R (1964) J Chem Phys 40:2745

    Article  CAS  Google Scholar 

  5. Hoffmann R (1964) J Chem Phys 40:2480

    Article  CAS  Google Scholar 

  6. Wolfsberg M, Helmholz L (1952) J Chem Phys 20:837

    Article  CAS  Google Scholar 

  7. Calzafferi G, Rytz R (1996) J Phys Chem 100:11122

    Article  Google Scholar 

  8. Anderson AB (1975) J Chem Phys 62:1187

    Article  CAS  Google Scholar 

  9. Nath K, Anderson AB (1990) Phys Rev B41:5652

    Article  Google Scholar 

  10. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B58:7260

    Article  Google Scholar 

  11. Cerdá J, Soria F (2000) Phys Rev B61:7965

    Article  Google Scholar 

  12. Nishino S, Fujiwara T, Yamasaki H, Yamamoto S, Hoshi T (2012) Solid State Ionics 225:22

    Article  CAS  Google Scholar 

  13. Nishino S, Fujiwara T (2013) J Mol Model 19:2363

    Article  CAS  Google Scholar 

  14. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) J Phys Chem B108:16593

    Article  Google Scholar 

  15. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) J Phys Chem B109:6103

    Article  Google Scholar 

  16. Abbott AP (2004) J Phys Chem 5:1242

    CAS  Google Scholar 

  17. Seki S, Kobayashi T, Kobayashi Y, Takaei K, Miyashiro H, Hayamizu K, Tsuzuki S, Mitsugi T, Umebayashi Y (2010) J Mol Liq 152:9

    Article  CAS  Google Scholar 

  18. ELSES package is available at http://www.elses.jp

  19. Frisch MJ, et al. (2009) Gaussian 09 Revision B 01. Gaussian, Inc., Wallingford

    Google Scholar 

  20. Nelder JA, Mead R (1965) Comp J 7:308

    Article  Google Scholar 

  21. Nihino S, Fujiwara T, Yamasaki H (2014) Phys Rev B90:024303

    Article  Google Scholar 

  22. Nishino S, Fujiwara T, Yamasaki H, Yamamoto S, Yamamoto S, Hoshi T (2011) The 62nd annual meeting of the International Society of Electrochemistry, Niigata

  23. Anderson OK (1975) vol B12, p 3060

  24. Anderson OK, Jepsen O, Glötzel D (1985) Highlights of condensed matter theory, North Holland

  25. Dronskowski R, Blochl PE (1993) J Phys Chem 97:8617

    Article  CAS  Google Scholar 

  26. Homma K, Yonemura M, Kobayashi T, Nagao M, Hirayama M, Kanno R (2011) Solid State Ionics 182:53

    Article  CAS  Google Scholar 

  27. Kanno R, Hata T, Kawamoto Y, Irie M (2000) Solid State Ionics 130:97

    Article  CAS  Google Scholar 

  28. Liu Z, Fu W, Payzant EA, Yu X, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C (2013) J Am Chem Soc 135:975

    Article  CAS  Google Scholar 

  29. Tachez M, Malugani JP, Mercier R, Robert G (1984) Solid State Ionics 14:181

    Article  CAS  Google Scholar 

  30. Momma K, Izumi F (2011) J Appl Crystallogr 44:1272

    Article  CAS  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work is partly supported by the Toyota Motor Corporation, and A-step project supported by JST. The numerical calculation was carried out partly at the Research Center for Computational Science, Okazaki, Japan, and the supercomputer centers at the ISSP, The University of Tokyo. 3D images of structure and MO were produced using VESTA [30] and VMD [31].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Nishino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishino, S., Fujiwara, T., Watanabe, N. et al. Parameter determination procedure for extended Hückel approximation and its application for solid-state electrolytes. J Mol Model 21, 169 (2015). https://doi.org/10.1007/s00894-015-2694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2694-1

Keywords

Navigation