Skip to main content
Log in

Molecular stacking character and charge transport properties of tetrabenzoheptacenes derivatives: the effects of nitrogen doping and phenyl substitution

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The nitrogen doping and phenyl substitution effects on the geometries, molecular stacking character, electronic, and charge transport properties of tetrabenzoheptacene (TTBH) have been investigated by means of density functional theory (DFT) calculation and incoherent charge hopping model. Our results indicate that the nitrogen doping (TTH) at the 6,8,15,17 positions improves its stability in air and the ability of electron injection and in the meantime slightly changes the molecular stacking due to the C-H···N interaction. For both TTBH and TTH, large hole transport mobility (μ h ) and electron transport mobility (μ e ), which are on the same order of magnitude, are given rise by their dense displaced π-stacking in crystal. Comparatively, the phenyl substitution (Ph-TTBH) at the 6,8,15,17 positions adopts a non-planar conformation, adverse to close packing and therefore leads to smaller electron/hole transport mobility (μ) than those of TTBH and TTH. The calculations suggest TTBH and TTH are promising candidates for excellent ambipolar OFET materials.

In comparison with parent tetrabenzoheptacenes compound, the C-H···N hydrogen bonds interaction caused by nitrogen doping gives rise to different relative in-plane displacement of the dimer with shortest centroid distance in crystal structure. Such distinguish leads to the significantly different frontier molecular orbital interaction of monomers in the dimer, which explains the different nature of the charge transfer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang CW, Vanslyke SA (1987) Appl Phys Lett 5:913–915

    Article  Google Scholar 

  2. Slyke SAV, Chen CH, Tang CW (1996) Appl Phys Lett 69:2160–2162

    Article  Google Scholar 

  3. Mas-Torrent M, Rovira C (2008) Chem Soc Rev 37:827–838

    Article  CAS  Google Scholar 

  4. Shirota Y, Kageyama H (2007) Chem Rev 107:953–1010

    Article  CAS  Google Scholar 

  5. Garnier F (1998) Chem Phys 227:253–262

    Article  CAS  Google Scholar 

  6. Klauk H (2010) Chem Soc Rev 39:2643–2666

    Article  CAS  Google Scholar 

  7. Lin Y, Li YF, Zhan XW (2012) Chem Soc Rev 41:4245–4272

    Article  CAS  Google Scholar 

  8. Hains AW, Liang ZQ, Woodhouse MA, Gregg BA (2010) Chem Rev 110:6689–6735

    Article  CAS  Google Scholar 

  9. O’Neill M, Kelly SM (2011) Adv Mater 23:566–584

    Article  Google Scholar 

  10. Anthony JE (2008) Angew Chem Int Ed Engl 47:452–483

    Article  CAS  Google Scholar 

  11. Anthony JE (2006) Chem Rev 106:5028–5048

    Article  CAS  Google Scholar 

  12. Bendikov M, Wudl F (2004) Chem Rev 104:4891–4945

    Article  CAS  Google Scholar 

  13. Kivelson S, Chapman OL (1983) Phys Rev B 28:7236–7243

    Article  CAS  Google Scholar 

  14. Kertesz M, Lee YS, Stewart JJP (1989) Int J Quantum Chem 35:305–313

    Article  CAS  Google Scholar 

  15. Biermann D, Schmidt W (1980) J Am Chem Soc 102:3163–3173

    Article  CAS  Google Scholar 

  16. Mateo-Alonso A (2014) Chem Soc Rev 43:6311–6324

    Article  CAS  Google Scholar 

  17. More S, Bhosale R, Choudhary S, Mateo-Alonso A (2012) Org Lett 14:4170–4173

    Article  CAS  Google Scholar 

  18. Choudhary S, Gozalvez C, Higelin A, Krossing I, Melle-Franco M, Mateo-Alonso A (2014) Chem Eur J 20:1525–1528

    Article  CAS  Google Scholar 

  19. More S, Bhosale R, Mateo-Alonso A (2014) Chem Eur J 20:10626–10631

    Article  CAS  Google Scholar 

  20. Kulisic N, More S, Mateo-Alonso A (2011) Chem Commun 47:514–516

    Article  CAS  Google Scholar 

  21. Clar E (1964) Polycyclic hydrocarbons. Springer, London, p 200

  22. Duong HM, Bendikov M, Steiger D, Zhang QC, Sonmez G, Yamada J, Wudl F (2003) Org Lett 5:4433–4436

    Article  CAS  Google Scholar 

  23. Mateo-Alonso A, Kulisic N, Valenti G, Marcaccio M, Paolucci F, Prato M (2010) Chem Asian J 5:482–485

    Article  CAS  Google Scholar 

  24. Tauber MJ, Kelley RF, Giaimo JM, Rybtchinski B, Wasielewski MR (2006) J Am Chem Soc 128:1782–1783

    Article  CAS  Google Scholar 

  25. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas J-L (2007) Chem Rev 107:926–952

    Article  CAS  Google Scholar 

  26. Wu QX, Geng Y, Liao Y, Tang XD, Yang GC, Su ZM (2012) Theor Chem Acc 131:1121–1129

    Article  Google Scholar 

  27. Zhao CB, Wang WL, Yin SW, Ma Y (2013) New J Chem 37:2925–2934

    Article  CAS  Google Scholar 

  28. Zhao CB, Guo YL, Guan L, Ge HG, Yin SW, Wang WL (2014) Synth Met 188:146–155

    Article  CAS  Google Scholar 

  29. Marcus RA (1993) Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  30. Hush NS (1958) J Chem Phys 28:962–972

    Article  CAS  Google Scholar 

  31. Bredas JL, Calbert JP, da Silva Filho DA (2002) J Cornil Proc Natl Acad Sci USA 99:5804–5809

    Article  CAS  Google Scholar 

  32. Cornil J, Lemaur V, Calbert J-P, Bredas J-L (2002) Adv Mater 14:726–729

    Article  CAS  Google Scholar 

  33. Zhang YX, Cai X, Bian YZ, Li XY, Jiang JZ (2008) J Phys Chem C 112:5148–5159

    Article  CAS  Google Scholar 

  34. Huang J-D, Wen S-H, Deng W-Q, Han K-L (2011) J Phys Chem B 115:2140–2147

    Article  CAS  Google Scholar 

  35. Peng Q, Yi YP, Shuai ZG, Shao JS (2007) J Am Chem Soc 129:9333–9339

    Article  CAS  Google Scholar 

  36. Nan GJ, Yang XD, Wang LJ, Shuai ZG, Zhao Y (2009) Phys Rev B 79:115203–115211

    Article  Google Scholar 

  37. Yin SW, Li LL, Yang YM, Reimers JR (2012) J Phys Chem C 116:14826–14836

    Article  CAS  Google Scholar 

  38. Norton JE, Bredas J-L (2008) J Am Chem Soc 130:12377–12384

    Article  CAS  Google Scholar 

  39. Brovchenko IV (1997) Chem Phys Lett 278:355–359

    Article  CAS  Google Scholar 

  40. McMahon DP, Troisi A (2010) J Phys Chem Lett 1:941–946

    Article  CAS  Google Scholar 

  41. Malagoli M, Bredas JL (2000) Chem Phys Lett 327:13–17

    Article  CAS  Google Scholar 

  42. Lemaur V, da Silva Filho DA, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije MG, van de Craats AM, Senthilkumar K, Siebbeles LDA, Warman JM, Bredas J-L, Cornil J (2004) J Am Chem Soc 126:3271–3279

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, CossiM SG, RegaN PGA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2010) Gaussian 09, Revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  44. Kuo M-Y, Chen H-Y, Chao I (2007) Chem Eur J 13:4750–4758

    Article  CAS  Google Scholar 

  45. Geng Y, Wang JP, Wu SX, Li HB, Yu F, Yang GC, Gao HZ, Shuai ZG (2011) J Mater Chem 21:134–143

    Article  CAS  Google Scholar 

  46. Yang XD, Wang LJ, Wang CL, Long W, Shuai ZG (2008) Chem Mater 20:3205–3211

    Article  CAS  Google Scholar 

  47. Yang XD, Li QK, Shuai ZG (2007) Nanotechnology 18:424029–424034

    Article  Google Scholar 

  48. Schein LB (1979) Phys Rev B 20:1631–1639

    Article  CAS  Google Scholar 

  49. Li CH, Huang CH, Kuo MY (2011) Phys Chem Chem Phys 13:11148–11155

    Article  CAS  Google Scholar 

  50. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  51. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  52. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845

    Article  Google Scholar 

  53. Song YB, Di CA, Yang XD, Li SP, Xu W, Liu YQ, Yang LM, Shuai ZG, Zhang DQ, Zhu DB (2006) J Am Chem Soc 128:15940–15941

    Article  CAS  Google Scholar 

  54. Huang JS, Kertesz M (2004) Chem Phys Lett 390:110–115

    Article  CAS  Google Scholar 

  55. Gao H-Z (2010) Synth Met 160:2104–2108

    Article  CAS  Google Scholar 

  56. Winkler M, Houk KN (2007) J Am Chem Soc 129:1805–1815

    Article  CAS  Google Scholar 

  57. He ZK, Mao RX, Liu DQ, Miao Q (2012) Org Lett 14:4190–4193

    Article  CAS  Google Scholar 

  58. Chen HY, Chao I (2006) Chem Phys Chem 7:2003–2007

    CAS  Google Scholar 

  59. Tang M, Oh JH, Reichardt AD, Bao Z (2009) J Am Chem Soc 131:3733–3740

    Article  CAS  Google Scholar 

  60. Chen X-K, Guo J-F, Zou L-Y, Ren A-M, Fan J-X (2011) J Phys Chem C 115:21416–21428

    Article  CAS  Google Scholar 

  61. Yasuda T, Goto T, Fujita K, Tsutsui T (2004) Appl Phys Lett 85:2098–2100

    Article  CAS  Google Scholar 

  62. Michaelson HB (1977) J Appl Phys 48:4729–4733

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (21173139, 21173138, 21473108), the Fundamental Research Funds for the Central Universities (No: GK201101004, GK201303004), and the Shaanxi Innovative Team of Key Science and Technology (2013KCT-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 25648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, L., Wang, W., Shao, R. et al. Molecular stacking character and charge transport properties of tetrabenzoheptacenes derivatives: the effects of nitrogen doping and phenyl substitution. J Mol Model 21, 126 (2015). https://doi.org/10.1007/s00894-015-2677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2677-2

Keywords

Navigation