Skip to main content
Log in

Explore the reaction mechanism of the Maillard reaction: a density functional theory study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. The Maillard reaction is a cascade of consecutive and parallel reaction. In the present model system study, glucose and glycine were taken as the initial reactants. On the basis of previous experimental results, the mechanisms of Maillard reaction have been proposed, and the possibility for the formation of different compounds have been evaluated through calculating the relative energy changes for different steps of reaction under different pH conditions. Our calculations reveal that the TS3 in Amadori rearrangement reaction is the rate-determining step of Maillard reaction with the activation barriers of about 66.7 and 68.8 kcal mol-1 in the gaseous phase and aqueous solution, respectively. The calculation results are in good agreement with previous studies and could provide insights into the reaction mechanism of Maillard reaction, since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Maillard LC (1912) Acad Sci Ser 154:66–68

    CAS  Google Scholar 

  2. Davidek J, Velisek J, Pokorny J (1990) Development in food science: chemical changes during food processing. Elsevier, Amsterdam

  3. Eskin NAE (2000) Biochemistry of foods. Academic, San Diego

  4. Macrane R, Robinson RK, Saadler MJ (1993) Encyclopedia of food science, food technology and nutrition. Academic, London

  5. Ledl F, Schleicher E (1990) Angew Chem Int Ed 29:565–594

    Article  Google Scholar 

  6. Warshel A (1991) Computer modelling of chemical reactions in enzymes and solutions. Wiley, New York

  7. Prasad BR, Plotnikov NV, Warshel A (2013) J Phys Chem B 117:153–163

    Article  CAS  Google Scholar 

  8. Kamerlin SCL, Sharma PK, Prasad RB, Warshel A (2013) Q Rev Biophys 46:1–132

    Article  CAS  Google Scholar 

  9. Kamerlin SCL, Warshel A (2011) Comput Mol Sci 1:30–45

    Article  CAS  Google Scholar 

  10. Fors S (1983) ACS Symp Ser 215:185–286

    Article  CAS  Google Scholar 

  11. Friedman M (1996) J Agric Food Chem 44:631–653

    Article  CAS  Google Scholar 

  12. Finot PA, Aeschbacher HU, Hurrell RF, Liardon R (eds) (1990) The Maillard reaction in food processing, human nutrition and physiology. Birkäuser, Basel

  13. Morales FJ, Jimenez-Perez S (2001) Food Chem 72:119–125

    Article  CAS  Google Scholar 

  14. Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert MC, Riediker S (2002) Nature 419:449–450

    Article  CAS  Google Scholar 

  15. Mottram DS, Wedzicha BL, Dodson AT (2002) Nature 419:448–449

    Article  CAS  Google Scholar 

  16. Kaanane A, Labuza TP (1989) The Maillard reaction in foods. In: Baynes JW, Monnier VM (eds) The Maillard reaction in aging, diabetes and nutrition. Alan Rliss, New York, pp 301–327

    Google Scholar 

  17. Hodge JE (1953) J Agric Food Chem 1:928–943

    Article  CAS  Google Scholar 

  18. Van Boekel MAJS (1996) J Food Sci 61:477–489

    Article  Google Scholar 

  19. Yaylayan VA (1997) Trends Food Sci Technol 8:13–18

    Article  CAS  Google Scholar 

  20. Martins SIFS, Van Boekel MAJS, Jongen WMF (2000) Czech J Food Sci 18:281–282

    Google Scholar 

  21. Ghiron AF, Quack B, Mahinney TP, Feather MS (1988) J Agric Food Chem 36:673–676

    Article  Google Scholar 

  22. Tressl R, Nittka C, Kersten E (1995) J Agric Food Chem 43:1163–1169

    Article  CAS  Google Scholar 

  23. Yaylayan VA, Huyghues-Despointes A (1996) J Agric Food Chem 44:672–681

    Article  Google Scholar 

  24. Van Boekel MAJS, Brands C (1998) Heating of sugar-casein solutions: isomerization and Maillard reactions. In: Brien OJ, Nursten HE, Crabbe MJC, Ames JM (eds) The Maillard reaction in foods and medicine. Royal Society of Chemistry, Cambridge, pp 154–158

  25. Van Boekel MAJS (2001) Nahrung/Food 45:150–159

    Article  Google Scholar 

  26. Rizzi GP (2003) J Agric Food Chem 51:1728–1731

    Article  CAS  Google Scholar 

  27. Du QQ, Song FR, Liu ZQ, Liu SY (2010) Acta Chim Sin 13:1331–1336

    Google Scholar 

  28. Jokic A, Zimpel Z, Huang PM, Mezey PG (2001) SAR QSAR Environ Res 12:297–307

    Article  CAS  Google Scholar 

  29. Jalbout AF, Shipar MAH, Navarro JL (2007) Food Chem 103:919–926

    Article  CAS  Google Scholar 

  30. Patel S, Rabone J, Russell S, Tissen J, Klaffke W (2001) J Chem Inf Comput Sci 41:926–933

    Article  CAS  Google Scholar 

  31. Ericksson C ed (1981) Maillard reaction in food: chemical, physiological and technological aspects. In: Progress in food and nutrition science 5, Pergamon, Oxford

  32. Waller GR, Feather MS (eds) (1983) The Maillard reaction in foods and nutrition, ACS Symp Ser 215, Washington DC

  33. Fujimaki M, Namiki M, Kato H (eds) (1986) Amino-carbonyl reactions in foods and biological systems. Developments in food science 13. Elsevier, Amsterdam

  34. O′Brien J, Nursten HE, Crabbe MJC, Ames JM (eds) (1998) The Maillard reaction in foods and medicine. Royal Society of Chemistry, Cambridge

  35. Beck AD (2003) J Chem Phys 98:5648–5652

    Article  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  38. Wang GC, Pan YM, Gao QY, Zhao XZ (1996) Chin J Chem Phys 9:406–411

    CAS  Google Scholar 

  39. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  40. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669–681

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1 Gaussian Inc, Wallingford

  42. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  43. Ho CT (1996) The Maillard reaction: consequences for the chemical and life sciences. Ikan R (ed) Wiley, New York, p 27

  44. Macrane R, Robinson RK, Saadler MJ (eds) (1993) Encyclopedia of food science, food technology and nutrition, vol 1. Academic, London

  45. Jalbout AF, Roy AK, Shipar MAH, Ahmed MS (2008) Int J Quantum Chem 108:589–597

    Article  CAS  Google Scholar 

  46. Shipar MAH (2006) Food Chem 98:395–402

    Article  Google Scholar 

  47. Koenig PH, Ghosh N, Hoffmann M, Elstner M, Tajkhorshid E, Frauenheim T, Cui Q (2006) J Phys Chem A 110:548–563

    Article  CAS  Google Scholar 

  48. Cao ZX, Mo YR, Thiel W (2007) Angew Chem Int Ed 46:6811–6815

    Article  CAS  Google Scholar 

  49. Galesa K, Bren U, Kranjc A, Mavri J (2008) J Agric Food Chem 56:8720–8727

    Article  CAS  Google Scholar 

  50. Bren U, Zupan M, Guengerich FP, Mavri J (2006) J Org Chem 71:4078–4084

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges financial support from the National Science Foundation of China (21203166, 21302167, 21473157), the Natural Science Foundation of Zhejiang Province (Y4100620), and the Food Science and Engineering the Most Important Discipline of Zhejiang Province (JYTsp2014111).

Compliance with ethical standards

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ge-Rui Ren or Hu-Jun Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, GR., Zhao, LJ., Sun, Q. et al. Explore the reaction mechanism of the Maillard reaction: a density functional theory study. J Mol Model 21, 132 (2015). https://doi.org/10.1007/s00894-015-2674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2674-5

Keywords

Navigation