Skip to main content
Log in

Effect of collision energy on the reaction mechanism of C(3P) + OH(X 2 Π) → CO(X 1 Σ +) + H(2S)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quasiclassical trajectory calculations based on a fully global ab initio potential energy surface of the rotational angular momentum polarisation of the product CO in the title reaction are reported. The alignment and orientation of the rotational angular momentum of the CO fragment in the scattering frame were found to be sensitive to the initial collision energy chosen. Differences in the angular momentum polarization at different collision energies were traced to differences in the microscopic reaction mechanism. The results of this study suggest that the title reaction is mainly dominated by an abstraction reaction mechanism (involving the short-lived and metastable intermediate complex COH) at low collision energies; however, at relatively high energies, an insertion reaction mechanism (involving the long-lived and stable intermediate complex HCO) plays a role.

Schematic of the abstraction mechanism, which leads to the orientation of the angular momentum of the product CO along the positive y-axis. The H atom is red, the C atom is yellow, and the O atom is green. Crosses and circles represent directions into and out of the scattering plane

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee SH, Liu K (2000) In: Campargue R (ed) Advances in molecular beam research and applications. Springer, Berlin

  2. Casavecchia P (2000) Rep Prog Phys 63:355

    Article  CAS  Google Scholar 

  3. Smith IWM, Herbst E, Chang Q (2004) Mon Not R Astron Soc 350:323

    Article  CAS  Google Scholar 

  4. Carty D, Goddard A, Kohler SPK, Sims IR, Smith IWM (2006) J Phys Chem A 110:3101

    Article  CAS  Google Scholar 

  5. Graff MM (1989) Astrophys J 339:239

    Article  CAS  Google Scholar 

  6. Zanchet A, Bussery-Honvault B, Honvault P (2006) J Phys Chem A 110:12017

    Article  CAS  Google Scholar 

  7. Zanchet A, Halvick P, Rayez JC, Bussery-Honvault B, Honvault P (2007) J Chem Phys 126:184308

  8. Zanchet A, Halvick P, Bussery-Honvault B, Honvault P (2008) J Chem Phys 128:204301

  9. Bussery-Honvault B, Dayou F, Zanchet A (2008) J Chem Phys 129:234302

    Article  Google Scholar 

  10. Lin SY, Guo H, Honvault P (2008) Chem Phys Lett 453:140

    Article  CAS  Google Scholar 

  11. Gray SK, Balint-Kurti GG (1998) J Chem Phys 108:950

    Article  CAS  Google Scholar 

  12. Balint-Kurti GG, Gonzalez AI, Goldfield EM, Gray SK (1998) Faraday Discuss 110:169

    Article  CAS  Google Scholar 

  13. Hankel M, Balint-Kurti GG, Gray SK (2003) Int J Quantum Chem 92:205

    Article  CAS  Google Scholar 

  14. Bulut N, Zanchet A, Honvault P, Bussery-Honvault B, Bañares L (2009) J Chem Phys 130:194303

    Article  Google Scholar 

  15. Song P, Zhu YH, Liu JY, Ma FC (2010) J Theor Comput Chem 9:935

    Article  CAS  Google Scholar 

  16. Ding YJ, Shi Y (2011) Comput Theor Chem 963:306

    Article  CAS  Google Scholar 

  17. Alexander AJ, Aoiz FJ, Bañares L, Brouard M, Simons JP (2000) Phys Chem Chem Phys 2:571

    Article  CAS  Google Scholar 

  18. Zhang L, Chen MD, Wang ML, Han KL (2000) J Chem Phys 112:3710

    Article  CAS  Google Scholar 

  19. Chu TS, Zhang Y, Han HK (2006) Int Rev Phys Chem 25:201

    Article  CAS  Google Scholar 

  20. Li XH, Wang MS, Pino I, Yang CL, Ma LZ (2009) Phys Chem Chem Phys 11:10438

    Article  CAS  Google Scholar 

  21. Han B, Zong FJ, Wang CL, Ma WY, Zhou JH (2010) Chem Phys 374:94

    Article  CAS  Google Scholar 

  22. Huang YR (2014) J Mol Model 20:2151

    Article  Google Scholar 

  23. Orr-Ewing AJ, Zare RN (1994) Annu Rev Phys Chem 45:315

    Article  CAS  Google Scholar 

  24. De Miranda MP, Clary DC (1997) J Chem Phys 106:4509

    Article  Google Scholar 

  25. Aoiz FJ, Brouard M, Enriquez PA (1996) J Chem Phys 105:4964

    Article  CAS  Google Scholar 

  26. Han KL, He GZ, Lou NQ (1996) J Chem Phys 105:8699

    Article  CAS  Google Scholar 

  27. Alexander AJ, Aoiz FJ, Bañares L, Brouard M, Short J, Simons JP (1997) J Phys Chem A 101:7544

    Article  CAS  Google Scholar 

  28. Han KL, Zhang L, Xu DL, He JZ, Lou NQ (2001) J Phys Chem A 105:2956

    Article  CAS  Google Scholar 

  29. Ma JJ, Chen MD, Cong SL, Han KL (2006) Chem Phys 327:529

    Article  CAS  Google Scholar 

  30. Ju LP, Han KL, Zhang JZH (2009) J Comput Chem 30:305

    Article  CAS  Google Scholar 

  31. Brouard M, Lambert HM, Rayner SP, Simons JP (1996) Mol Phys 89:403

    CAS  Google Scholar 

  32. Wang ML, Han KL, He GZ (1998) J Chem Phys 109:5446

    Article  CAS  Google Scholar 

  33. De Miranda MP, Aoiz FJ, Banares L, Sáez-Rábanos V (1999) J Chem Phys 111:5368

  34. Aoiz FJ, Bañares L, Herrero VJ (1998) J Chem Soc Faraday Trans 94:2483 (and references therein)

    Article  CAS  Google Scholar 

  35. Shafer-Ray NE, Orr-Ewing AJ, Zare RN (1995) J Phys Chem 99:7591

    Article  CAS  Google Scholar 

  36. Aoiz FJ, Bañares L, Herrero VJ (2006) J Phys Chem A 110:12546

    Article  CAS  Google Scholar 

  37. Boggio-Pasqua M, Voronin AI, Halvick P, Rayez JC (2000) Phys Chem Chem Phys 2:1693

    Article  CAS  Google Scholar 

  38. Halvick P, Boggio-Pasqua M, Bonnet L, Voronin AI, Rayez JC (2002) Phys Chem Chem Phys 4:2560

    Article  CAS  Google Scholar 

  39. Dayou F, Spielfiedel A (2003) J Chem Phys 119:4237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Young Scientists Fund of the National Natural Science Foundation of China (grant no. 11404154) and the Scientific Research Foundation of the Education Department of Liaoning Province, China (grant no. L2013149)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanru Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y. Effect of collision energy on the reaction mechanism of C(3P) + OH(X 2 Π) → CO(X 1 Σ +) + H(2S). J Mol Model 21, 103 (2015). https://doi.org/10.1007/s00894-015-2634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2634-0

Keywords

Navigation