Skip to main content
Log in

Enantiomeric discrimination of chiral organic salts by chiral aza-15-crown-5 ether with C 1 symmetry: experimental and theoretical approaches

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The work involves an experimental (1H NMR) and theoretical (MD, MM-PBSA and DFT) investigation of the molecular recognition and discrimination properties of a chiral aza-15-crown-5 against methyl esters of alanine, phenylalanine and valine hydrochloride salts. The results indicate that the receptor binds enantiomers with moderate binding constants (88–1,389 M−1), with phenylalanine being more discriminated. The difference in experimental binding free energies (ΔG R − ΔG S) for alanine, phenylalanine and valine enantiomers were calculated as −0.36, −1.58 and 0.80 kcal mol−1, respectively. The differences in theoretical binding energies were calculated by MM-PBSA (ΔE R PB − ΔE S PB=) as −0.30, −1.45 and 0.88, by B3LYP/6-31+G(d) as −1.17, −0.84 and 0.74 and by M06-2X/6-31+G(d) as −1.40, −3.26 and 1.66 kcal mol−1. The data obtained give valuable information regarding the molecular recognition mode of the organoammonium complexes of chiral aza-crown ether with C 1 symmetry, which may be relevant to biological systems.

Left Superimposed lowest energy conformers of complexes of chiral aza-crown ether with the enantiomers of phenylalanine obtained from cluster analysis of MD trajectories. Right Non-linear dependence of 1H NMR chemical shifts of methyl groups of isopropyl in receptor 5 on the concentration of the enantiomers of valine ester salts

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barron LD (1986) True and false chirality and absolute asymmetric synthesis. J Am Chem Soc 108:5539

    CAS  Google Scholar 

  2. Quack M (2002) How important is parity violation for molecular and biomolecular chirality? Angew Chem Int Ed 41:4618

    CAS  Google Scholar 

  3. Knowles WS (2002) Asymmetric hydrogenations (Nobel Lecture). Angew Chem Int Ed 41:1998

    CAS  Google Scholar 

  4. Noyori R (2002) Asymmetric catalysis: science and opportunities (Nobel Lecture). Angew Chem Int Ed 41:2008

    CAS  Google Scholar 

  5. Sharpless KB (2002) Searching for new reactivity (Nobel Lecture). Angew Chem Int Ed 41:2024

    CAS  Google Scholar 

  6. Cram JD (1998) The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew Chem Int Ed 27:1009

    Google Scholar 

  7. Pedersen CJ (1998) The discovery of crown ethers (Noble Lecture). Angew Chem Int Ed Engl 27:1021

    Google Scholar 

  8. Lehn JM (1998) Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew Chem Int Ed Engl 27:87

    Google Scholar 

  9. Atwood JL, Davies J, MackNikol, DD (1996) In: Vögtle F (ed) Elsevier, Oxford, pp 1–10

  10. Lehn JM (1995) Supramolecular chemistry. VCH, Weinheim

    Google Scholar 

  11. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    CAS  Google Scholar 

  12. Lehn JM, Sirlin C (1978) Molecular catalysis: enhanced rates of thiolysis with high structural and chiral recognition in complexes of a reactive macrocyclic receptor molecule. J Chem Soc Chem Commun 949–951

  13. Stoddart JF (1979) From carbohydrates to enzyme analogues (Tate and Lyle Lecture). Chem Soc Rev 8:85–142

    CAS  Google Scholar 

  14. Chadwick DJ, Cliffe A, Stutther IO (1981) Chiral diaza −18-crown −6-derivatives. J Chem Soc Chem Commun 19:992–994

    Google Scholar 

  15. Mizutani T, Ema T, Tomita T, Kuroda Y, Ogoshi H (1994) Design and synthesis of a trifunktional chiral porphyrin with C-2 symmetry as a chiral recognition host for amino -acid esters. J Am Chem Soc 116:4240–4250

    CAS  Google Scholar 

  16. Kyba EB, Koga K, Sousa LR, Siegel MG, Cram DJ (1973) Chiral recognition in molecular complexing. J Am Chem Soc 95:2692–2693

    CAS  Google Scholar 

  17. Stoddart JF (1988) Chiral crown ethers. In: Eliel EL, Wilen SH (eds) Topics in stereochemistry, vol 17. Wiley, New York, pp 207–288

  18. Zhang XX, Bradshaw JS, Izatt RM (1997) Enantiomeric recognition of amine compounds by chiral macrocyclic receptors. Chem Rev 97:3313–3361

    CAS  Google Scholar 

  19. Behr JP, Lehn JM, Vierling P (1976) Stable ammonium cryptates of chiral macrocyclic receptor molecules bearing amino-acid side-chains. J Chem Soc Chem Commun 1976:621–623

  20. Cram DJ, Cram JM (1978) Design of complexes between synthetic hosts and organic guests. Acc Chem Res 11:8–14

    CAS  Google Scholar 

  21. Kyba EP, Timko JM, Kaplan LJ, De Jong F, Gokel GW, Cram DJ (1978) Host-guest complexation. 11. Survay of chiral recognition of amine and amino ester salts by bilocular bidinaphthyl hosts. J Am Chem Soc 100:4555–4568

    CAS  Google Scholar 

  22. Lingenfelter DS, Helgeson RC, Cram DJ (1981) Host-guest complexation 23. High chiral recognition of amino-acid and ester guests by hosts containing one chiral element. J Org Chem 46:393–406

    CAS  Google Scholar 

  23. Davidson RB, Bradshaw JS, Jones BA, Dalley NK, Christensen JJ, Izatt RM, Morin FG, Grant DM (1984) Enantiomeric recognition of organic ammonium-salts by chiral crown ethers based on the pyridino-18-crown-6 structure. J Org Chem 49:353–357

    CAS  Google Scholar 

  24. Iimori T, Erickson SD, Rheingold AL, Still WC (1989) Enantioselective complexation with a conformationally homogeneous C2 podand ionophore. Tetrahedron Lett 30:6947–6950

    CAS  Google Scholar 

  25. Maruyama K, Sohmiya H, Tsukube H (1989) New chiral host molecules derived from naturally occurring monensin ionophore. J Chem Soc Chem Commun 864–865

  26. Bradshaw JS, Huszthy P, McDaniel CW, Zhu CY, Dalley NK, Izatt RM, Lifson S (1990) Enantiomeric recognition of organic ammonium salts by chiral dialkyl-, dialkenyl- and tetramethyl-substituted pyridino-18-crown-6 and tetramethyl-subsituted bis-pyridino-18-crown-6 ligands: comparison of the temperature dependent 1H NMR and empirical force field techniques. J Org Chem 55:3129–3137

  27. Huszthy P, Bradshaw JS, Zhu CY, Izatt RM, Lifson S (1991) Recognition by new symmetrıcally substituted chiral diphenyl-butylpyridino-18-crown-6 and di-tert-butylpyridino-18-crown-6 and asymmetrically substituted chiral dimethylpyridıno-18-crown-6 ligands of the enantiomers of various organic ammonium perchlorates. J Org Chem 56:3330–3336

    CAS  Google Scholar 

  28. Li G, Still WC (1991) Podand sulfones-enantioselective receptors for peptidic ammonium-ions. J Org Chem 56:6964–6966

    CAS  Google Scholar 

  29. Wang X, Erickson SD, Iimori T, Still WC (1992) Enantioselective complexation of organic ammonium-ions by simple tetracyclic podand ionophores. J Am Chem Soc 114:4128–4137

    CAS  Google Scholar 

  30. Armstrong A, Still WC (1992) Enantioselective cation binding with a functionalized podand ionophore. J Org Chem 57:4580–4582

    CAS  Google Scholar 

  31. Miyake H, Yamashita T, Kojima Y, Tsukube H (1995) Enantioselective transport of amino-acid ester salts by macrocyclic pseudopeptides containing n, n-ethylene-bridged-dipeptide units. Tetrahedron Lett 36:7669–7672

    CAS  Google Scholar 

  32. Araki K, Inada K, Shinkai S (1996) Chiral recognition of alpha-amino acid derivatives with a homooxacalix[3]arene: construction of a pseudo-C-2-symmetrical compound from a C-3-symmetrical macrocycle. Angew Chem Int Ed Engl 35:72–74 Angew Chem 108:92–94

  33. Gerczei T, Bocskei Z, Keseru GM, Samu E, Huszthy P (1999) Enantiomeric recognition of alpha-(1-naphthyl)ethylammonium perchlorate by enantiomerically pure dimethylphenazino-18-crown-6 ligand in solid and gas phases. Tetrahedron Asymmetry 10:1995–2005

    CAS  Google Scholar 

  34. Turgut Y, Sahin E, Togrul M, Hosgoren H (2004) The enantiomeric recognition of chiral organic ammonium salts by chiral monoaza-15-crown-5 ether derivatives. Tetrahedron Asymmetry 15:1583–1588

    CAS  Google Scholar 

  35. Kim J-K, Song S, Kim J, Kim TH, Kim H, Suh H (2006) Synthesis of chiral azophenolic pyridino-18-crown-6 ether and its enantiomeric recognition toward chiral primary amines. Bull Kor Chem Soc 27:1577–1580

    CAS  Google Scholar 

  36. Karakaplan M, Turgut Y, Aral T, Hosgoren H (2006) The synthesis and formation of complexes between derivatives of chiral Aza-18-crown-6 ethers and chiral primary organic ammonium salts. J Incl Phenom Macrocycl Chem 54:315–319

    CAS  Google Scholar 

  37. Karakaplan M, Ak D, Colak M, Kocakaya OS, Hosgoren H, Pirinccioglu N (2013) Synthesis of new diaza-18-crown-6 ethers derived from trans-(R, R)-1,2-diaminocyclohexane and investigation of their enantiomeric discrimination ability with amino acid ester salts. Tetrahedron 69:349–358

    CAS  Google Scholar 

  38. Yilmaz T, Hosgoren H (2003) Synthesis of chiral monoaza-15-crown-5 ethers from l-valinol and the enantiomeric recognition of chiral amines and their perchlorates salts. Tetrahedron Asymmetry 14:3815–3818

  39. El-Barghouthi MI, Jaime C, Akielah RE, Al-Sakhen NA, Masoud NA, Issa AA, Badwanand AA, Zughul MB (2009) Free energy perturbation and MM/PBSA studies on inclusion complexes of some structurally related compounds with beta-cyclodextrin. Supramol Chem 21:603–610

    CAS  Google Scholar 

  40. El-Barghouthi MI, Jaime C, Al-Sakhen NA, Issa AA, Abdoh AA, Al Omari MM, Badwan AA, Zughul MB (2008) Molecular dynamics simulations and MM-PBSA calculations of the cyclodextrin inclusion complexes with 1-alkanols, para-substituted phenols and substituted imidazoles. J Mol Struct (THEOCHEM) 853:45–52

    CAS  Google Scholar 

  41. Choi Y, Jung S (2004) Molecular dynamics (MD) simulations for the prediction of chiral discrimination of N-acetylphenylalanine enantiomers by cyclomaltoheptaose (beta-cyclodextrin, beta-CD) based on the MM-PBSA (molecular mechanics-Poisson-Boltzmann surface area) approach. Carbohydr Res 339:1961–1966

    CAS  Google Scholar 

  42. Nunez-Aguero C-J, Escobar-Llanos C-M, Diaz D, Jaimec C, Garduno-Juarez R (2006) Chiral discrimination of ibuprofen isomers in β-cyclodextrin inclusion complexes: experimental (NMR) and theoretical (MD, MM/GBSA) studies. Tetrahedron 62:4162–4172

    Google Scholar 

  43. Srinavasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA and phosphoramidate-DNA helices. J Am Chem Soc 120:9401–9409

    Google Scholar 

  44. Gouda H, Kuntz ID, Case DA, Kollman PA (2003) Free energy calculations for theophylline binding to an RNA aptamer: comparison of MM-PBSA and thermodynamic integration methods. Biopolymers 68:16–34

    CAS  Google Scholar 

  45. Trieb M, Rauch C, Wibowo FR, Wellenzohn B, Leidl KB (2004) Cooperative effects on the formation of intercalationsites. Nucleic Acids Res 32:4696–4703

    CAS  Google Scholar 

  46. Fogolari F, Tosatto SCE (2005) Application of MM/PBSA colony free energy to loop decoy discrimination: toward correlation between energy and root mean square deviation. Protein Sci 14:889–901

    CAS  Google Scholar 

  47. Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem 25:238–250

    CAS  Google Scholar 

  48. Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) Validation and use of the MM-PBSA approach for drug discovery. J Med Chem 48:4040–4048

    CAS  Google Scholar 

  49. Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43:3786–3791

    CAS  Google Scholar 

  50. Lee MR, Duan Y, Kollman PA (2000) Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins Struct Funct Genet 39:309–316

    CAS  Google Scholar 

  51. Wang J, Morin P, Wang W, Kollman PA (2001) Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 123:5221–5230

    CAS  Google Scholar 

  52. Wang W, Kollman PA (2000) Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J Mol Biol 303:567–587

    CAS  Google Scholar 

  53. Pearlman DA (2005) Evaluating the molecular mechanics Poisson-Boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J Med Chem 48:7796–7807

    CAS  Google Scholar 

  54. Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49:4805–4808

    CAS  Google Scholar 

  55. Weis A, Katebzadeh K, Soderhjelm P, Nilsson I, Ryde U (2006) Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. J Med Chem 49:6596–6606

    CAS  Google Scholar 

  56. Fielding L (2000) Determination of association constants (K-a) from solution NMR data. Tetrahedron 56:6151–6170

    CAS  Google Scholar 

  57. Hirose KA (2001) practical guide for the determination of binding constants. J Inc Phenom Macrocycl Chem 39:193–209

    CAS  Google Scholar 

  58. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  59. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT

  60. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    CAS  Google Scholar 

  61. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21:132–14

    CAS  Google Scholar 

  62. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641

    CAS  Google Scholar 

  63. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    CAS  Google Scholar 

  64. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    CAS  Google Scholar 

  65. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    CAS  Google Scholar 

  66. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, DoniniO O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    CAS  Google Scholar 

  67. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and hosphoramidate-DNA helices. J Am Chem Soc 120:9401–9409

    CAS  Google Scholar 

  68. Cornell WD, Cieplak CI, Bayly IR, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    CAS  Google Scholar 

  69. Cramer CJ, Truhlar DG (1999) Implicit solvation models: equilibria, structure, spectra and dynamics. Chem Rev 99:2161–2200

    CAS  Google Scholar 

  70. Simonson T (2003) Electrostatics and dynamics of proteins. Rep Prog Phys 66:737–787

    CAS  Google Scholar 

  71. Still WC, Tempczyk A, Hawley R, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129

    CAS  Google Scholar 

  72. McQuarrie DA (1976) Statistical mechanics. Harper & Row, New York

    Google Scholar 

  73. Brooks BR, Janezic D, Karplus M (1995) Harmonic analysis of large systems. J Comput Chem 16:1522–1553

    CAS  Google Scholar 

  74. Stewart JJP (2007) Optimization of parameters for semiempirical methods. V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    CAS  Google Scholar 

  75. Becke AD (1993) Density-functional thermochemistry 3. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  76. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  77. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin-density calculations-a critical analysis. Can J Phys 58:1200–1211

    CAS  Google Scholar 

  78. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab-intio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J Phys Chem 98:11623–11627

    CAS  Google Scholar 

  79. Zhao Y, Schultz NE, Truhlar DG (2005) Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys 123:161103

    Google Scholar 

  80. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Google Scholar 

  81. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101

    Google Scholar 

  82. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    CAS  Google Scholar 

  83. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J; Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT

  84. Umezawa NY, Hirota M, Taceuchi Y (1995) The CH/pi interaction-significance in molecular recognition. Tetrahedron 51:8665–8701

    Google Scholar 

  85. Olson CA, Shi Z, Kallenbach NR (2001) Polar interactions with aromatic side chains in alpha-helical peptides: CH center dot center dot center dot O H-bonding and cation-pi interactions. J Am Chem Soc 123:6451–6452

    CAS  Google Scholar 

  86. Shi Z, Olson CA, Kallenbach NR (2002) Cation-pi interaction in model alpha-helical peptides. J Am Chem Soc 124:3284–3291

    CAS  Google Scholar 

  87. Orner BP, Salvatella X, Quesada JS, de Mendoza J, Giralt E, Hamilton AD (2002) De novo protein surface design: use of cation-pi interactions to enhance binding between an alpha-helical peptide and a cationic molecule in 50 % aqueous solution. Angew Chem Int Ed 41:117–119

    CAS  Google Scholar 

  88. Pletneva EV, Laederach AT, Fulton DB, Kostic NM (2001) The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains. J Am Chem Soc 123:6232–6245

    CAS  Google Scholar 

  89. Burghardt TP, Juranic N, Macura S, Ajtai K (2002) Cation-pi interaction in a folded polypeptide. Biopolymers 63:261–272

    CAS  Google Scholar 

  90. Fernandez-Recio J, Vazquez A, Civera C, Sevilla P, Sancho J (1997) The tryptophan/histidine interaction in alpha-helices. J Mol Biol 267:184–197

    CAS  Google Scholar 

  91. Tsou LK, Tatko CD, Waters ML (2002) Simple cation-pi interaction between a phenyl ring and a protonated amine stabilizes an alpha-helix in water. J Am Chem Soc 124:14917–14921

    CAS  Google Scholar 

  92. Malone JF, Murray CM, Charlton MH, Docherty R, Lavery AJ (1997) X-H center dot center dot center dot pi(phenyl) interactions—theoretical and crystallographic observations. J Chem Soc Faraday Trans 93:3429–3436

    CAS  Google Scholar 

  93. Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Google Scholar 

  94. Shieh HS, Berman HM, Dabrow M, Neidle S (1980) The structure of drug-deoxydinucleoside phosphate complex; generalized conformational behavior of intercalation complexes with RNA and DNA fragments. Nucleic Acids Res 8:85–97

  95. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. J Chem Phys 114:5149–5155

  96. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed Engl 42:1210–1250

    CAS  Google Scholar 

  97. Burley SK, Petsko GA (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28

    CAS  Google Scholar 

  98. Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA (2007) Predicting absolute ligand binding free energies to a simple model site. J Mol Biol 371:1118–1134

    CAS  Google Scholar 

  99. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483

    CAS  Google Scholar 

  100. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules, vol 16. International series of monographs on chemistry. Oxford University Press, New York

  101. Tsuzuki S, Luthi HP (2001) Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: assessing the PW91 model. J Chem Phys 114:3949–3957

    CAS  Google Scholar 

  102. Cerny J, Hobza P (2005) The X3LYP extended density functional accurately describes H-bonding but fails completely for stacking. Phys Chem Chem Phys 7:1624–1626

    CAS  Google Scholar 

  103. Allen MJ, Tozer DJ (2002) Helium dimer dispersion forces and correlation potentials in density functional theory. J Chem Phys 117:11113–11120

    CAS  Google Scholar 

  104. Hobza P, Sponer J, Reschel T (1995) Density functional theory and molecular clusters. J Comput Chem 16:1315–1325

    CAS  Google Scholar 

  105. Kristyan S, Pulay P (1994) Can (semi)local density functional theory account for the London dispersion forces? Chem Phys Lett 229:175–180

    CAS  Google Scholar 

  106. Kurita N, Sekino H (2003) Ab initio and DFT studies for accurate description of van der Waals interaction between rare-gas atoms. Int J Quantum Chem 91:355–362

    CAS  Google Scholar 

  107. Johnson ER, Wolkow RA, DiLabio GA (2004) Application of 25 density functionals to dispersion-bound homomolecular dimers. Chem Phys Lett 394:334–338

    CAS  Google Scholar 

  108. von Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D (2004) Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys Rev Lett 93:153004

    Google Scholar 

  109. von Lilienfeld OA, Tavernelli I, Rothlisberger U, Sebastiani D (2005) Performance of optimized atom-centered potentials for weakly bonded systems using density functional theory. Phys Rev B 71:195119

    Google Scholar 

  110. Dion M, Rydberg H, Schroder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401

    CAS  Google Scholar 

  111. Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:154101

    Google Scholar 

  112. Johnson ER, Becke AD (2005) A post-Hartree–Fock model of intermolecular interactions. J Chem Phys 123:024101

    Google Scholar 

  113. Becke AD, Johnson ER (2006) Exchange-hole dipole moment and the dispersion interaction: high-order dispersion coefficients. J Chem Phys 124:014104

    Google Scholar 

  114. Zimmerli U, Parrinello M, Koumoutsakos P (2004) Dispersion corrections to density functionals for water aromatic interactions. J Chem Phys 120:2693–2699

    CAS  Google Scholar 

  115. Jurecka P, Cerny J, Hobza P, Salahub DR (2007) Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J Comput Chem 28:555–569

  116. Wu Q, Yang W (2002) Empirical correction to density functional theory for van der Waals interactions. J Chem Phys 116:515–524

    CAS  Google Scholar 

  117. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    CAS  Google Scholar 

  118. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    CAS  Google Scholar 

  119. Lorenzo I, Grana AM (2013) Stacking and hydrogen bond interactions between adenine and gallic acid. J Mol Model 19:5293–5299

    CAS  Google Scholar 

  120. Thanthiriwatte KS, Hohenstein EG, Burns LA, Sherrill CD (2011) Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. J Chem Theory Comput 7:88–96

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dicle University Research Council for financial support (DUAPK-02-FF-20, DUBAP-05-FF-31 and DUBAP-05-FF-32), Dr. Selami Ercan for Gaussian 09 facilities, The Scientific and Technological Research Council of Turkey (TÜBİTAK) for TR-GRID facilities and Professor D. Case for a waiver license of AMBER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmettin Pirinççioglu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3478 kb)

ESM 2

(DOC 3143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocakaya, S.Ö., Turgut, Y. & Pirinççioglu, N. Enantiomeric discrimination of chiral organic salts by chiral aza-15-crown-5 ether with C 1 symmetry: experimental and theoretical approaches. J Mol Model 21, 55 (2015). https://doi.org/10.1007/s00894-015-2604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2604-6

Keywords

Navigation