Skip to main content

Advertisement

Log in

Optimization of selection of chain amine scrubbers for CO2 capture

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In order to optimize the selection of a suitable amine molecule for CO2 scrubbers, a series of ab initio calculations were performed at the B3LYP/6-31+G(d,p) level of theory. Diethylenetriamine was used as a simple chain amine. Methyl and hydroxyl groups served as examples of electron donors, and electron withdrawing groups like trifluoromethyl and nitro substituents were also evaluated. Interaction distances and binding energies were employed as comparison operators. Moreover, natural bond orbital (NBO) analysis, namely the second order perturbation approach, was applied to determine whether the amine–CO2 interaction is chemical or physical. Different sizes of substituents affect the capture ability of diethylenetriamine. For instance, trifluoromethyl shields the nitrogen atom to which it attaches from the interaction with CO2. The results presented here provide a means of optimizing the choice of amine molecules for developing new amine scrubbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Hereafter, mention of oxygen atom(s) refers to the oxygen atom(s) of the CO2 molecule, while hydrogen and nitrogen atoms will mean the hydrogen and nitrogen atoms of diethylenetriamine.

References

  1. Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927

    Article  CAS  Google Scholar 

  2. Scholes A, Smith KH, Kentish SE, Stevens GW (2010) CO2 capture from pre-combustion processes-strategies for membrane gas separation. Int J Greenh Gas Con 4:739–755

    Article  CAS  Google Scholar 

  3. Drage T, Smith K, Pevida C, Arenillas A, Snape C (2009) Development of adsorbent technologies for post-combustion CO2 capture. Energy Procedia 1:881–884

    Article  CAS  Google Scholar 

  4. Reynolds AJ, Verheyen TV, Adeloju SB, Meuleman E, Feron P (2012) Towards commercial scale post-combustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol 46:3643–3654

    Article  CAS  Google Scholar 

  5. Sayari A, Heydari-Gorji A, Yang Y (2012) CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J Am Chem Soc 134:13834–13842

    Article  CAS  Google Scholar 

  6. Lu W, Sculley JP, Yuan D, Krishna R, Wei Z, Zhou H-C (2012) Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angew Chem Int Ed 51:7480–7484

    Article  CAS  Google Scholar 

  7. Amos R, Handy N, Knowles P, Rice J, Stone A (1985) Ab-initio prediction of properties of carbon dioxide, ammonia, and carbon dioxide…ammonia. J Phys Chem 89:2186–2192

    Article  CAS  Google Scholar 

  8. Jackson P, Robinson K, Puxty G, Attalla M (2009) In situ fourier transform-infrared (FT-IR) analysis of carbon dioxide absorption and desorption in amine solutions. Energy Procedia 1:985–994

    Article  CAS  Google Scholar 

  9. Astaria G, Savage DW, Bisio A (1983) Gas treating with chemical solvents. Wiley, New York

    Google Scholar 

  10. Bonenfant D, Mimeault M, Hausler R (2003) Determination of the structural features of distinct amines important for the absorption of CO2 and regeneration in aqueous solution. Ind Eng Chem Res 42:3179–3184

    Article  CAS  Google Scholar 

  11. Sartori G, Savage DW (1983) Viscosity, density and surface tension of binary mixtures of water and n-methyldiethanolamine and water and diethanolamine and tertiary mixtures of these amines with water over the temperature range 20–100 °C. Ind Eng Chem Fundam 22:239–249

    Article  CAS  Google Scholar 

  12. Aroonwilas A, Veawab A (2004) Characterization and comparison of the CO2 absorption performance into single and blended alkanolamines in a packed column. Ind Eng Chem Res 43:2228–2237

    Article  CAS  Google Scholar 

  13. Hook RJ (1997) An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Ind Eng Chem Res 36:1779–1790

    Article  CAS  Google Scholar 

  14. Ciferno JP, DiPietro P, Tarka T (2005) Final report. National Energy Technology Laboratory, US Department of Energy, Pittsburgh

    Google Scholar 

  15. You JK, Park H, Yang SH, Hong WH, Shin W, Kang JK, Yi KB, Kim J-N (2008) Influence of additives including amine and hydroxyl groups on aqueous ammonia absorbent for CO2 capture. J Phys Chem B 112:4323–4328

    Article  CAS  Google Scholar 

  16. Mindrup E, Schneider W (2010) Computational comparison of the reactions of substituted amines with CO2. ChemSusChem 3:931–938

    Article  CAS  Google Scholar 

  17. Gurkan BE, de la Fuente JC, Mindrup EM, Ficke LE, Goodrich BF, Price EA, Schneider WF, Brennecke JF (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132:2116–2117

    Article  CAS  Google Scholar 

  18. Kim N, Yoon S, Park G (2013) Evaluating the CO2-capturing efficacy of amine and carboxylic acid motifs: ab initio studies on thermodynamic versus kinetic properties. Tetrahedron 69:6693–6697

    Article  CAS  Google Scholar 

  19. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  20. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  23. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: non-empirical meta–generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401

    Article  Google Scholar 

  24. Becke A (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  25. Takatani T, Hohenstein EG, Malagoli M, Marshall MS, Sherrill CD (2010) Basis set consistent revision of the S22 test set of non-covalent interaction energies. J Chem Phys 132:144104

    Article  Google Scholar 

  26. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam N, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas O, Foresman J, Ortiz J, Cioslowski J, Fox D (2009) Gaussian 09

  27. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  28. Farbos B, Tassaing T (2009) Substituent effect on the interaction of aromatic primary amines and diamines with supercritical CO2 from infrared spectroscopy and quantum calculations. Phys Chem Chem Phys 11:5052–5061

    Article  CAS  Google Scholar 

  29. DeYonker NJ, Grimes T, Yockel S, Dinescu A, Mintz B, Cundari TR, Wilson AK (2006) The correlation-consistent composite approach: application to the G3/99 test set. J Chem Phys 125:104111

    Article  Google Scholar 

  30. Armakovic S, Armakovic SJ, Setrajcic JP, Jacimovski SK, Holodkov V (2014) Sumanene and its adsorption properties towards CO, CO2 and NH3 molecules. J Mol Model 20:2170

    Article  Google Scholar 

  31. Armakovic S, Armakovic SJ, Setrajcic JP (2013) Hydrogen storage properties of sumanene. Int J Hydrogen Energy 38:12190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was made possible by an NPRP Grant # 5-1437- 1-243 from the Qatar National Research Fund (a member of Qatar Foundation) and generous research computing support from Cornell University. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed F. Shibl.

Electronic supplementary material

Electronic Supplementary Material is available, including stabilization energies of donor–acceptor interaction between all substituted diethylenetriamines and CO2 in NBO basis and gas-phase atomic Cartesian coordinates of all optimized molecules.

ESM 1

(DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Marri, M.J., Khader, M.M., Giannelis, E.P. et al. Optimization of selection of chain amine scrubbers for CO2 capture. J Mol Model 20, 2518 (2014). https://doi.org/10.1007/s00894-014-2518-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2518-8

Keywords

Navigation