Skip to main content
Log in

Construction and conformational behavior of peptoids with cis-amide bond geometry: design of a peptoid with alternate φ, ψ values of inverse PP-II/PP-II and PP-I structures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In peptoids due to the absence of amide protons, the backbone is devoid of hydrogen bond donor, linked by tertiary amide, which can be iso-energetic between cis and trans-amide bond geometry. The peptoids can be realized with cis amide bond if the side chain of ith residue can engage the carbonyl group of ith-1 residue in CH--O interactions. Simulations studies both in water and DMSO have been carried out. The peptoid Ac-(Ntle)7 -NMe2 can adopt degenerate conformations with alternate φ, ψ values of inverse PP-I and PP-I type structure’s, or vice versa in water. In DMSO, Ac-(Ntle)7-NMe2 also adopts inverse PP-I type structure. Like polyproline, molecule adopting a rigid structure can be used as molecular markers or spacers in biological studies.

The peptoid Ac-(Nala-Ntle)3-NMe2 with alternate trans and cis amide bond geometry for Nala and Ntle residue corresponding to inverse PP-II/PP-II type and for Ntle residue of PP-I type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simon RJ, Kania RS, Zuckermann RN et al. (1992) Peptoids: a modular approach to drug discovery. PNAS 89:9367–9371

    Article  CAS  Google Scholar 

  2. Seo J, Lee B-C, Zuckermann RN (2011) Peptoids: synthesis, characterization and nanostructures. Compr Biomater 2:53–76

    Article  Google Scholar 

  3. Fowler SA, Blackwell HE (2009) Structure-function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org Biomol Chem 7:1508–1524

    Article  CAS  Google Scholar 

  4. Rosales AM, Segalman RA, Zuckermann RN (2013) Polypeptoids: a model system to study the effect of monomer sequence on polymer properties and self-assembly. Soft Matter 9:8400–8414

    Article  CAS  Google Scholar 

  5. Olivier GK, Cho A, Sanii B et al (2013) Antibody-mimetic peptoid nanosheets for molecular recognition. ACS Nano 7:9276–9286

    Article  CAS  Google Scholar 

  6. Yoo B, Kirshenbaum K (2008) Peptoid architectures: elaboration, actuation and application. Curr Opin Chem Biol 12:714–721

    Article  CAS  Google Scholar 

  7. Czyzewski M, Barron AE (2008) Protein and peptide biomimicry: gold-mining inspiration from Nature’s ingenuity. AIChE J 54:1–7

    Article  Google Scholar 

  8. Nandel FS, Saini A (2014) Nature of amide bond geometry and population of polyproline/inverse type structures in peptoids. Indian J Biochem Biophys (accepted)

  9. Simon RJ, Kania RS, Zuckermann RN, Huebner VD, Jewell DA, Banville S, Ng S, Wang L, Rosenberg S, Marlowe CK, Spellmeyer DC, Tan R, Frankel AD, Santi DV, Cohen FE, Bartlett PA (1992) Peptoids: a modular approach to drug discovery. Proc Nad Acad Sci 89:9367–9371

    Article  CAS  Google Scholar 

  10. Baldauf C, Günther R, Hofmann H-J (2006) Helices in peptoids of α- and β-peptides. Phys Biol 3:S1–S9

    Article  CAS  Google Scholar 

  11. Möhle K, Hofmann H-J (1996) Peptides and peptoids — a quantum chemical structure comparison. Biopolymers 38:781–790

    Article  Google Scholar 

  12. Brandt W, Herberg T, Wessjohann L (2011) Systematic conformational investigations of peptoids and peptoid-peptide chimeras. Biopolymers 96:651–668

    Article  CAS  Google Scholar 

  13. Walesa R, Broda MA (2014) Solvent effects on the conformational preferences of model peptoids. MP2 study. J Pept Sci 20:203–211

    Article  CAS  Google Scholar 

  14. Nandel FS, Saini A (2011) Peptoids with aliphatic sidechains as helical structures without hydrogen bonds and collagen/inverse-collagen type structures. J Biophys Chem 2:37–48

    Article  CAS  Google Scholar 

  15. Zuckermann RN, Kerr JM, Kent SBH, Moos WH (1992) Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J Am Chem Soc 114:10646–10647

    Article  CAS  Google Scholar 

  16. Nam KT, Shelby SA, Choi PH et al. (2010) Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 9:454–460

    Article  CAS  Google Scholar 

  17. Kudirka R, Tran H, Sanii B et al. (2011) Folding of a single-chain, information-rich polypeptoid sequence into a highly ordered nanosheet. Biopolymers Pept Sci 96:586–595

    Article  CAS  Google Scholar 

  18. Miller SM, Simon RJ, Ng S et al. (1995) Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers. Drug Dev Res 35:20–32

    Article  CAS  Google Scholar 

  19. Zuckermann RN, Kodadek T (2009) Peptoids as potential therapeutics. Curr Opin Mol Ther 11:299–307

    CAS  Google Scholar 

  20. Maigret B, Perahia D, Pullman B (1970) Molecular orbital calculations on the conformation of polypeptides and proteins. IV. The conformation of the prolyl and hydroxyprolyl residues. J Theor Biol 29:275–291

    Article  CAS  Google Scholar 

  21. Sui Q, Borchardt D, Rabenstein DL (2007) Kinetics and equilibria of cis/trans isomerization of backbone amide bonds in peptoids. J Am Chem Soc 129:12044–48

    Article  Google Scholar 

  22. Wu CW, Kirshenbaum K, Sanborn TJ et al. (2003) Structural and spectroscopic studies of peptoid oligomers with α-chiral, aliphatic side chains. J Am Chem Soc 125:13525–13530

    Article  CAS  Google Scholar 

  23. Crapster JA, Stringer JR, Guzei IA, Blackwell HE (2011) Design and conformational analysis of peptoids containing N-hydroxy amides reveals a unique sheet-like secondary structure. Biopolymers Pept Sci 96:604–616

    Article  CAS  Google Scholar 

  24. Shah NH, Butterfoss GL, Nguyen K et al. (2008) Oligo(N-aryl glycines): a new twist on structured peptoids. J Am Chem Soc 130:16622–16632

    Article  CAS  Google Scholar 

  25. Fowler SA, Luechapanichkul R, Blackwell HE (2009) Synthesis and characterization of nitroaromatic peptoids: fine tuning peptoid secondary structure through monomer position and functionality. J Org Chem 74:1440–1449

    Article  CAS  Google Scholar 

  26. Stringer JR, Crapster JA, Guzei IA, Blackwell HE (2011) Extraordinarily robust polyproline type I peptoid helices generated via the incorporation of α-chiral aromatic N-1-naphthylethyl side chains. J Am Chem Soc 133:15559–15567

    Article  CAS  Google Scholar 

  27. Stringer JR, Crapster JA, Guzei IA, Blackwell HE (2010) Construction of peptoids with all trans-amide backbones and peptoid reverse turns via the tactical incorporation of N-aryl side chains capable of hydrogen bonding. J Org Chem 75:6068–6078

    Article  CAS  Google Scholar 

  28. Kirshenbaum K, Zuckermann RN, Dill KA (1999) Designing polymers that mimic biomolecules. Curr Opin Struct Biol 9:530–535

    Article  CAS  Google Scholar 

  29. Armand P et al. (1997) Chiral N-substituted glycines can form stable helical conformations? Fold Des 2:369–375

    Article  CAS  Google Scholar 

  30. Burkoth TS, Beausoleil E, Kaur S et al. (2002) Toward the synthesis of artificial proteins: the discovery of an amphiphilic helical peptoid assembly. Chem Biol 9:647–54

    Article  CAS  Google Scholar 

  31. Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. PNAS 37:205–211

    Article  CAS  Google Scholar 

  32. Crapster JA, Guzei IA, Blackwell HE (2013) A peptoid ribbon secondary structure. Angew Chem Int Ed 52:1–7

    Article  Google Scholar 

  33. Roy O, Caumes C, Esvan Y et al. (2013) The tert-butyl side chain: a powerful means to lock peptoid amide bonds in the Cis conformation. Org Lett 15:2246–2249

    Article  CAS  Google Scholar 

  34. Moretto C, Peggion C, Formaggio F et al. (2005) Stereoselective acylation of a racemic amine with Cα-methyl phenylglycine-based dipeptide 5(4H)-oxazolones. Chirality 17:481–487

    Article  CAS  Google Scholar 

  35. Pullman A, Pullman B (1974) Molecular orbital calculations on the conformations of amino acid residues of protein. Adv Protein Chem 28:347–526

    Article  CAS  Google Scholar 

  36. Lawrence RP, Thompson CJ (1982) The boron analogue of glycine: a theoretical investigation of structure and properties. Mol Str THEOCHEM 88:37–43

    Article  Google Scholar 

  37. Aleman C, Casanovas J (1994) Ab initio SCF and force-field calculations on low-energy conformers of 2-acetylamino-2, N-dimethylpropanamide. Chem Soc Perkins Trans 2:563–568

    Article  Google Scholar 

  38. Aleman C, Casanovas J (1995) Molecular conformational analyses of dehydroalanine analogues. Biopolymers 36:71–82

    Article  CAS  Google Scholar 

  39. Nandel FS, Khare B (2005) Conformation of peptides constructed from achiral amino acid residues Aib and ΔZPhe: computational study of the effect of L/D- Leu at terminal positions. Biopolymers 77:63–73

    Article  CAS  Google Scholar 

  40. Nandel FS, Malik N, Singh B, Jain DVS (1999) Conformational structure of peptides containing dehydroalanine. Formation of beta bends ribbon structure. Int J Quant Chem 72:15–23

    Article  CAS  Google Scholar 

  41. Nandel FS, Malik N, Singh B, Virdi M (1999) Designing of peptides with left handed helical structure by incorporating the unusual amino acids. Indian J Biochem Biophys 36:195–203

    CAS  Google Scholar 

  42. Weiner SJ, Singh UC, O’Donell TJ, Kollman PA (1984) Quantum and molecular mechanical studies on alanyl dipeptide. J Am Chem Soc 106:6243–6245

    Article  CAS  Google Scholar 

  43. Mohle K, Hoffman HJ (1998) Secondary structure formation in N-substituted peptides. J Pept Res 51:19–28

    Article  CAS  Google Scholar 

  44. Adzubei AA, Eisenmenger F, Tumanyan VG et al. (1987) Third type of secondary structure: noncooperative mobile conformation. Protein data bank analysis. Biophys Biochem Res Commun 146:934–938

    Article  Google Scholar 

  45. Aduzbei AA, Sternberg JE (1993) Left-handed poly-proline II helices commonly occur in globular proteins. J Mol Biol 229:472–493

    Article  Google Scholar 

  46. der Spoel DV, Lindahl E, Hess B et al. (2005) GROMACS: fast, flexible, and free. J Comp Chem 26:1701–1718

    Article  Google Scholar 

  47. Sui Q, Borchardt D, Rabenstein DL (2007) Kinetics and equilibria of cis/trans isomerization of backbone amide bonds in peptoids. J Am Chem Soc 129:12042–12048

    Article  CAS  Google Scholar 

  48. Wu CW, Kirshenbaum K, Sanborn TJ et al. (2003) Structural and spectroscopic studies of peptoid oligomers with α-chiral, aliphatic side chains. J Am Chem Soc 125:13525–13530

    Article  CAS  Google Scholar 

  49. Butterfoss GL, Renfren PD, Kuhlman B, Kirshenbaum KA (2009) A preliminary survey of the peptoid folding. J Am Chem Soc 131:16798–16807

    Article  CAS  Google Scholar 

  50. Schuettelkopf W, Van Aalten DMF (2004) PRODRG-a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D60:1355–1363

    CAS  Google Scholar 

  51. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

    Chapter  Google Scholar 

  52. Liu H, Muller-Plathe F, Van Gunsteren WF (1995) A force field for liquid dimethyl sulfoxide and physical properties of liquid dimethyl sulfoxide calculated using molecular dynamics simulation. J Am Chem Soc 117:4363–4366

    Article  CAS  Google Scholar 

  53. Van Gunsteren WF, Billeter SR, Eising AA et al. (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zürich, Zürich, Switzerland, pp 1–1042

    Google Scholar 

  54. Hockney RW, Eastwood JW (1981) Computer simulation using particles. McGraw-Hill, New York

    Google Scholar 

  55. Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  56. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comp Chem 13:1463–1472

    Article  Google Scholar 

  57. Essmann U, Perera L, Berkowitz ML et al. (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592

    Article  CAS  Google Scholar 

  58. Nandel FS, Jaswal RR (2014) Conformational study of N-methylated alanine peptides and design of Aβ inhibitor. Indian J Biochem Biophys 51:7–18

    CAS  Google Scholar 

  59. Nandel FS, Kaur H, Malik N, Shankar N, Jain DVS (2001) Conformational study of peptides containing dehydrophenylalanine: helical structures without hydrogen bonds. Indian J Biochem Biophys 38:417–425

    CAS  Google Scholar 

  60. Gorske C, Bastian BL, Geske GD, Blackwell HE (2007) Local and tunable n → π* interactions regulate amide isomerism in the peptoid backbone. J Am Chem Soc 129:8928–29

    Article  CAS  Google Scholar 

  61. Fufezan C (2010) The role of buergi‐dunitz interactions in the structural stability of proteins. Proteins 78:2831–38

    Article  CAS  Google Scholar 

  62. Qiu Y, Chen P, Guo P, Li Y, Liu M (2008) Supra molecular chiroptical switches based on achiral molecules. Adv Mater 20:2908–2913

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Department of Biotechnology, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateh Singh Nandel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandel, F.S., Jaswal, R.R., Saini, A. et al. Construction and conformational behavior of peptoids with cis-amide bond geometry: design of a peptoid with alternate φ, ψ values of inverse PP-II/PP-II and PP-I structures. J Mol Model 20, 2429 (2014). https://doi.org/10.1007/s00894-014-2429-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2429-8

Keywords

Navigation