Skip to main content
Log in

Theoretical prediction of the mechanisms for defect healing or oxygen doping in a hexagonal boron nitride (h-BN) sheet with nitrogen vacancies by NO2 molecules

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Healing defects in hexagonal boron nitride (h-BN sheet) or doping it with oxygen can modify or restore its physical properties, which would increase its range of potential applications. Thus, it is very important to find an efficient method of healing or a BN sheet or doping it with oxygen. In this work, using density functional theory (DFT) calculations, we identified a mechanism for healing h-BN sheets with nitrogen vacancies (VN) or doping BN sheets with oxygen using NO2 molecules. The results indicate that such reactions involve three steps: (1) the chemisorption of NO2, (2) the incorporation of the N or O atom of NO2 into the defective h-BN sheet, and (3) the removal of the adsorbed O atom or NO molecule. We found that the proposed mechanism is theoretically possible and has the following advantages. First, the barrier is about 0.60 eV for the formation of the O-doped h-BN sheet. For the healing process, because the energy released during NO2 chemisorption (−4.94 eV) completely offsets the subsequent barrier (1.17 eV), a perfect h-BN sheet can easily be achieved by using NO2 and an h-BN sheet with VB defects as reactants. Second, no catalyst is needed, and thus there is no need for a purification step to remove the catalyst. Third, NO2, a toxic gas, can be used as a reactant and will then be reduced to O2 or NO. Fourth, NO2 shows high selectivity for vacancy defect sites. Our findings show that this is an effective theoretical method of synthesizing O-doped h-BN sheets or of healing defective h-BN sheets, which should prove useful in the design of h-BN sheet-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–d
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8a–d

Similar content being viewed by others

References

  1. Arenal R, Blase X, Loiseau A (2010) Adv Phys 59:101–179

    Article  CAS  Google Scholar 

  2. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) ACS Nano 4:2979–2993

    Article  CAS  Google Scholar 

  3. Lin Y, Connell JW (2012) Nanoscale 4:6908–6939

    Article  CAS  Google Scholar 

  4. Pakdel A, Zhi C, Bando Y, Golberg D (2012) Mater Today 15:256–265

    Article  CAS  Google Scholar 

  5. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang JX, Ismach AF, Halperin EJ, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) ACS Nano 7:2898–2926

    Article  CAS  Google Scholar 

  6. Han WQ (2010) Anisotropic hexagonal boron nitride nanomaterials: synthesis and applications. Nanotechnologies for the Life Sciences vol 3: mixed metal nanomaterials. Wiley, New York

  7. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282–286

    Article  CAS  Google Scholar 

  8. Pakdel A, Zhi C, Bando Y, Nakayama T, Golberg D (2011) ACS Nano 5:6507–6515

    Article  CAS  Google Scholar 

  9. Yu J, Qin L, Hao Y, Kuang S, Bai X, Chong YM, Zhang W, Wang E (2010) ACS Nano 4:414–422

    Article  CAS  Google Scholar 

  10. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Nat Nanotechnol 5:722–726

    Article  CAS  Google Scholar 

  11. Itakura A, Tosa M, Ikeda S, Yoshihara K (1996) Vacuum 47:697–700

    Article  CAS  Google Scholar 

  12. Wu JCS, Lin ZA, Pan JW, Rei MH (2001) Appl Catal A 219:117–124

    Article  CAS  Google Scholar 

  13. Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D (2009) Adv Mater 21:2889–2893

    Article  CAS  Google Scholar 

  14. Wang Y, Shi ZX, Yin J (2011) J Mater Chem 21:11371–11377

    Article  CAS  Google Scholar 

  15. Pacile D, Meyer JC, Girit CO, Zettl A (2008) Appl Phys Lett 92:133107

    Article  Google Scholar 

  16. Gorbachev RV, Riaz I, Nair RR, Jalil R, Britnell L, Belle BD, Hill EW, Novoselov KS, Watanabe K, Taniguchi T, Geim AK, Blake P (2011) Small 7:465–468

    Article  CAS  Google Scholar 

  17. Han W, Wu L, Zhu Y, Watanabe K, Taniguchi T (2008) Appl Phys Lett 93:223103

    Article  Google Scholar 

  18. Warner JH, Rümmeli MH, Bachmatiuk A, Büchner B (2010) ACS Nano 4:1299–1304

    Article  CAS  Google Scholar 

  19. Wang X, Zhi C, Li L, Zeng H, Li C, Mitome M, Golberg D, Bando Y (2011) Adv Mater 23:4072–4076

    Article  CAS  Google Scholar 

  20. Lin Y, Williams TV, Xu TB, Cao W, Elsayed-Ali HE, Connell JW (2011) J Phys Chem C 115:2679–2685

    Article  CAS  Google Scholar 

  21. Nag A, Raidongia K, Hembram KPSS, Datta R, Waghmare UV, Rao CNR (2010) ACS Nano 4:1539–1544

    Article  CAS  Google Scholar 

  22. Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Nano Lett 10:3209–3215

    Article  CAS  Google Scholar 

  23. Lin Y, Williams TV, Connell JW (2010) J Phys Chem Lett 1:277–283

    Article  Google Scholar 

  24. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Science 331:568–571

    Article  CAS  Google Scholar 

  25. Lee KH, Shin HJ, Lee J, Lee IY, Kim GH, Choi JY, Kim SW (2012) Nano Lett 12:714–718

    Article  CAS  Google Scholar 

  26. Zobelli A, Ewels CP, Gloter A, Seifert G, Stephan O, Csillag S, Colliex C (2006) Nano Lett 6:1955–1960

    Article  CAS  Google Scholar 

  27. Jin CH, Lin F, Suenaga K, Iijima S (2009) Phys Rev Lett 102:195505

    Article  Google Scholar 

  28. Okada S (2009) Phys Rev B 80:161404

    Article  Google Scholar 

  29. Slotman GJ, Fasolino A (2013) J Phys Condens Matter 25:045009

    Article  CAS  Google Scholar 

  30. Lin Y, Williams TV, Cao W, Elsayed-Ali HE, Connell JW (2010) J Phys Chem C 114:17434–17439

    Article  CAS  Google Scholar 

  31. Meyer JC, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U (2009) Nano Lett 9:2683–2689

    Article  CAS  Google Scholar 

  32. Azevedo S, Kaschny JR, de Castilho CMC, de Mota BF (2009) Eur Phys J B 67:507–512

    Article  CAS  Google Scholar 

  33. Si MS, Xue DS (2007) Phys Rev B 75:193409

    Article  Google Scholar 

  34. Kim K, Park HJ, Woo BC, Kim KJ, Kim GT, Yun WS (2008) Nano Lett 8:3092–3096

    Article  CAS  Google Scholar 

  35. Kaiser AB, Gómez-Navarro C, Sundaram RS, Burghard M, Kern K (2009) Nano Lett 9:1787–1792

    Article  CAS  Google Scholar 

  36. Petravic M, Kavre RPI, Li LH, Chen Y, Fanc LJ, Yangc YW (2010) Phys Chem Chem Phys 12:15349–15353

    Article  CAS  Google Scholar 

  37. Wei XL, Wang MS, Bando Y, Golberg D (2011) ACS Nano 5:2916–2922

    Article  CAS  Google Scholar 

  38. Berseneva N, Krasheninnikov AV, Nieminen RM (2011) Phys Rev Lett 107:035501.1–035501.4

    Google Scholar 

  39. Park H, Wadehra A, Wilkins JW, Castro Neto AH (2012) Appl Phys Lett 100:253115.1–253115.4

    Google Scholar 

  40. Chen M, Zhao YJ, Liao JH, Yang XB (2012) Phys Rev B 86:045459.1–045459.7

    Google Scholar 

  41. Deng XH, Zhang DY, Si MS, Deng MS (2011) Phys E 44:495–500

    Article  CAS  Google Scholar 

  42. Gou GY, Pan BC, Shi L (2009) J Am Chem Soc 131:4839–4845

    Article  CAS  Google Scholar 

  43. Liu L, Sham TK, Han W, Zhi C, Bando Y (2011) ACS Nano 5:631–639

    Article  CAS  Google Scholar 

  44. Han WQ, Liu L, Sham TK, Liu Z (2012) Nanoscale 4:6951–6954

    Article  CAS  Google Scholar 

  45. Ohtani S, Yano T, Kondo S, Kondo Y, Tomita Y, Maeda Y (2013) Thin Solid Films 546:53–57

    Article  CAS  Google Scholar 

  46. Liu L, Sham TK, Han W (2013) Phys Chem Chem Phys 15:6929–6934

    Article  CAS  Google Scholar 

  47. Oba F, Togo A, Tanaka I, Watanabe K, Taniguchi T (2010) Phys Rev B 81:075125

    Article  Google Scholar 

  48. Wang C, Xiao B, Ding YH (2013) New J Chem 37:640–645

    Article  CAS  Google Scholar 

  49. Wang B, Pantelides ST (2011) Phys Rev B 83:245403

    Article  Google Scholar 

  50. Wang C, Ding YH (2013) J Mater Chem A 1:1885–1891

    Article  CAS  Google Scholar 

  51. Tsetseris L, Pantelides ST (2009) Carbon 47:901–908

    Article  CAS  Google Scholar 

  52. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  53. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  55. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  56. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  57. Henkelman G, Jósson H (2000) J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  58. Olsen RA, Kroes GJ, Henkelman G, Arnaldsson A, Jósson H (2004) J Chem Phys 121:9776–9792

    Article  CAS  Google Scholar 

  59. Zhou J, Wang Q, Sun Q, Jena P (2010) Phys Rev B 81:085442

    Article  Google Scholar 

  60. Zhao JX, Yu YY, Bai Y, Lu B, Wang BX (2012) J Mater Chem 22:9343–9350

    Article  CAS  Google Scholar 

  61. Lehtinen PO, Foster AS, Ma Y, Krasheninnikov AV, Nieminen RM (2004) Phys Rev Lett 93:187202

    Article  CAS  Google Scholar 

  62. Barbary E, Telling RH, Ewels CP, Heggie MI, Briddon PR (2003) Phys Rev B 68:144107

    Article  Google Scholar 

  63. Zhao JX, Wang HX, Liu YJ, Cai QH, Wang XZ (2013) Rsc Adv 3:4917–4926

    Article  CAS  Google Scholar 

  64. Song EH, Wen Z, Jiang Q (2011) J Phys Chem C 115:3678–3683

    Article  CAS  Google Scholar 

  65. Young DC (2001) Computational chemistry: a practical guide for applying techniques to real-world problems. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (no. 21203048), and the Scientific Research Fund of the Heilongjiang Provincial Education Department (no. 12531195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-xiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Jw., Liu, YJ. & Zhao, Jx. Theoretical prediction of the mechanisms for defect healing or oxygen doping in a hexagonal boron nitride (h-BN) sheet with nitrogen vacancies by NO2 molecules. J Mol Model 20, 2307 (2014). https://doi.org/10.1007/s00894-014-2307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2307-4

Keywords

Navigation