Skip to main content
Log in

Ab initio molecular simulations for proposing novel peptide inhibitors blocking the ligand-binding pocket of urokinase receptor

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Recent biochemical experiments have revealed that a variety of proteases play important roles in cancer invasion and metastasis. Among these proteases, urokinase-type plasminogen activator (uPA) is particularly important, since its specific binding to the receptor (uPAR) existing on the surface of a cancer cell is considered to be a trigger for cancer invasion. It is thus expected that the blocking of the binding can inhibit cancer invasion in the cancer patients and improve their prognosis dramatically. To develop a potent inhibitor for the binding, many types of peptides of amino acids were produced and their effect on the cancer invasion was investigated in the previous biochemical experiments. On the other hand, our previous ab initio molecular simulations have clarified that some amino acid residues of uPA play important roles in the specific binding between uPA and uPAR. In the present study, we propose some peptides composed of these important residues and investigate the specific interactions and the binding affinity between uPAR and the peptides at an electronic level, using ab initio molecular simulations. Base on the results simulated, we elucidate which peptide can bind more strongly to uPAR and propose a novel potent peptide which can inhibit the binding between uPAR and uPA efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kobayashi H, Gotoh J, Hirashima Y, Fujie M, Sugino D, Terao T (1995) Inhibitory effect of a conjugate between human urokinase and urinary trypsin inhibitor on tumor cell invasion in vitro. J Biol Chem 270:8361–8366

    Article  CAS  Google Scholar 

  2. Ruoslahti E (1996) How cancer spreads. Sci Am 9:48–55

    Google Scholar 

  3. Baker EA, Leaper DJ (2003) The plasminogen activator and matrix metalloproteinase systems in colorectal cancer: relationship to tumour pathology. Eur J Cancer 39:981–988

    Article  CAS  Google Scholar 

  4. Skelly MM, Troy A, Duffy MJ, Mulcahy HE, Duggan C, Connell TG, O’Donoghue DP, Sheahan K (1997) Urokinase-type plasminogen activator in colorectal cancer: relationship with clinicopathological features and patient outcome. Clin Cancer Res 3:1837–1840

    CAS  Google Scholar 

  5. Herszènyi L, Plebani M, Carraro P, De Paoli M, Roveroni G, Cardin R, Tulassay Z, Naccarato R, Farinati F (1999) The role of cysteine and serine proteases in colorectal carcinoma. Cancer 86:1135–1142

    Article  Google Scholar 

  6. Stephens RW, Nielsen HJ, Christensen IJ, Thorlacius-Ussing O, Sorensen S, Dano K, Brunner N (1999) Plasma urokinase receptor levels in patients with colorectal cancer: relationship to prognosis. J Natl Cancer Inst 91:869–874

    Article  CAS  Google Scholar 

  7. Nagase K, Kobayashi H, Nagata S, Yamamoto H, Natsume T, Dedachi K, Tsukamoto T, Kurita N (2007) Analysis of cancer invasion mechanism by cellular simulation. J Comp Aid Chem 8:75–84

    Article  Google Scholar 

  8. Kobayashi H, Terao T, Sugino D, Okushima M (1997) Cancerous metastasis inhibitor. US Patent, WO97/25422

  9. Sugiura H, Tsumura N, Kobayashi H, Kurita N (2004) Electronic properties for medicine inhibiting cancer metastasis (1): molecular orbital calculations for physiological substance bikunin. J Comput Aided Chem 5:62–69

    Article  Google Scholar 

  10. Tsumura N, Sugiura H, Kobayashi H, Kurita N (2004) Electronic properties for medicine inhibiting cancer metastasis (2): molecular orbital calculations for urokinase. J Comput Aided Chem 5:70–76

    Article  Google Scholar 

  11. Appella E, Robinson EA, Ullrich SJ, Stoppelli MP, Corti A, Cassani G, Blasi F (1987) The receptor-binding sequence of urokinase. A biological function for the growth-factor module of proteases. J Biol Chem 262:4437–4440

    CAS  Google Scholar 

  12. Bdeir K, Kuo A, Sachais BS, Rux AH, Bdeir Y, Mazar A, Higazi AA, Cines DB (2003) The kringle stabilizes urokinase binding to the urokinase receptor. Blood 102:3600–3608

    Article  CAS  Google Scholar 

  13. Barinka C, Parry G, Callahan J, Shaw DE, Kuo A, Bdeir K, Cines DB, Mazar A, Lubkowski J (2006) Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J Mol Biol 363:482–495

    Article  CAS  Google Scholar 

  14. GmbH RD, Burgle M, Graeff H, Kessler H, Magdolen V, Konig B, Koppitz M, Riemer C, Schmitt M, Weidle U (1998) Inhibitors for urokinase receptor. WO98/46731

  15. Kasumi T, Araki K, Mizushima T, Kobayashi H, Kurita N (2013) A proposal of potent inhibitor for cancer metastasis blocking the pocket of urokinase receptor: ab initio molecular simulations. J Phys: Conf Ser 433:012034

    Google Scholar 

  16. Tsuji S, Kasumi T, Nagase K, Yoshikawa E, Kobayashi H, Kurita N (2011) The effects of amino-acid mutations on specific interactions between urokinase-type plasminogen activator and its receptor: ab initio molecular orbital calculations. J Mol Graph Model 29:975–984

    Article  CAS  Google Scholar 

  17. Kasumi T, Araki K, Ohyama T, Tsuji S, Yoshikawa E, Kobayashi H, Kurita N (2013) The effects of vitronectin on specific interactions between urokinase-type plasminogen activator and its receptor: ab initio molecular orbital calculations. Mol Simul 39:769–779

    Article  CAS  Google Scholar 

  18. Huai Q, Zhou A, Lin L, Mazar AP, Callahan J, Shaw DE, Furie BC, Huang M (2008) Crystal structures of two human vitronectin, urokinase and urokinase receptor complexes. J Nat Struct Mol Biol 15:422–423

    Article  CAS  Google Scholar 

  19. Schwede T, Kopp J, Gues N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  Google Scholar 

  20. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and interpretation of protein pKa values. Proteins 61:704–721

    Article  CAS  Google Scholar 

  21. Delphine CB, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73:765–783

    Article  Google Scholar 

  22. Olsson MHM, Søndergard CR, Rostkowski M, Jensen JH (2011) PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537

    Article  CAS  Google Scholar 

  23. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  24. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  25. Jorgensen WL, Chandrasekhar J, Madura J, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  26. Frisch MJ et al. (2009) Gaussian09. Gaussian Inc., Wallingford, CT

    Google Scholar 

  27. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  28. Kitaura K, Sawai T, Asada T, Nakano T, Uebayashi M (1999) Pair interaction molecular orbital method: An approximate computational method for molecular interactions. Chem Phys Lett 312:319–324

    Article  CAS  Google Scholar 

  29. Ito M, Fukuzawa K, Ishikawa T, Mochizuki Y, Nakano T, Tanaka S (2008) Ab initio fragment molecular orbital study of molecular interactions in liganded retinoid X receptor: specification of residues associated with ligand inducible information transmission. J Phys Chem B112:12081–12094

    Article  Google Scholar 

  30. Mochizuki Y, Nakano T, Koikegami S, Tanimori S, Abe Y, Nagashima U, Kitaura K (2004) A parallelized integral-direct MP2 method with fragment molecular orbital scheme. Theor Chem Acc 112:442–452

    Article  CAS  Google Scholar 

  31. Mochizuki Y, Koikegami S, Nakano T, Amari S, Kitaura K (2004) Large scale MP2 calculations with fragment molecular orbital scheme. Chem Phys Lett 396:473–479

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Kurita.

Additional information

This paper belongs to Topical Collection 9th European Conference on Computational Chemistry (EuCo-CC9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizushima, T., Sugimoto, T., Kasumi, T. et al. Ab initio molecular simulations for proposing novel peptide inhibitors blocking the ligand-binding pocket of urokinase receptor. J Mol Model 20, 2292 (2014). https://doi.org/10.1007/s00894-014-2292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2292-7

Keywords

Navigation