Skip to main content

Advertisement

Log in

First-principles vdW-DF study on the enhanced hydrogen storage capacity of Pt-adsorbed graphene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ab initio vdW calculations with the DFT level of theory were used to investigate hydrogen (H2) adsorption on Pt-adsorbed graphene (Pt-graphene). We have explored the most energetically favorable sites for single Pt atom adsorption on the graphene surface. The interaction of H2 with the energetically favorable Pt-graphene system was then investigated. We found that H2 physisorbs on pristine graphene with a binding energy of −0.05 eV, while the binding energy is enhanced to −1.98 eV when H2 binds Pt-adsorbed graphene. We also found that up to four H2 molecules can be adsorbed on the Pt-graphene system with a −0.74 eV/H2 binding energy. The effect of graphene layer stretching on the Pt-graphene capacity/ability for hydrogen adsorption was evaluated. Our results show that the number of H2 molecules adsorbed on the Pt-graphene surface rises to six molecules with a binding energy of approximately −0.29 eV/H2. Our first-principles results reveal that the Young’s modulus was slightly decreased for Pt adsorption on the graphene layer. The first-principles calculated Young’s modulus for the H2-adsorbed Pt-graphene system demonstrates that hydrogen adsorption can dramatically increase the Young’s modulus of such systems. As a result, hydrogen adsorption on the Pt-graphene system might enhance the substrate strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schlapbach L, Züttel A (2001) Nature 414:353–358

    Article  CAS  Google Scholar 

  2. Cortright RD, Davada RR, Dumesic JA (2002) Nature 418:964–967

    Article  CAS  Google Scholar 

  3. Hentesche M, Hermann H, Lindackers D, Selfert G (2007) Int J Hydrogen Energy 32:1530

    Article  Google Scholar 

  4. Le Page V, Snow TP, Bierbaum VM (2009) Astrophys J 704:274

    Article  Google Scholar 

  5. Park HL, Chung YC (2010) Comp Mater Sci 49:297

    Article  Google Scholar 

  6. Ma J, Michaelides A, Alfè D (2011) J Chem Phys 134:134701

    Article  Google Scholar 

  7. Ataca C, Akturk E, Ciraci S (2009) Phys Rev B 79:041406

    Article  Google Scholar 

  8. Wang X, Zeng Z, Ahn H, Wang G (2009) Appl Phys Lett 95:183103

    Article  Google Scholar 

  9. Sahaym U, Norton MG (2008) J Mater Sci 43:5395

    Article  CAS  Google Scholar 

  10. Liu YL, Ren L, He Y, Cheng HP (2010) J Phys Condens Matter 22:445301

    Article  Google Scholar 

  11. Li M, Li Y, Zhou Z, Shen P, Chen Z (2009) Nano Lett 9:1944

    Article  CAS  Google Scholar 

  12. Sun YY, Lee K, Kim Y, Zhang SB (2009) Appl Phys Lett 95:033109

    Article  Google Scholar 

  13. Pan H-Z, Wang Y-L, He K-H, Wei M-Z, Ouyang Y, Chen L (2013) Chin Phys B 22(6):067101

    Article  Google Scholar 

  14. Deng WQ, Xu X, Goddard WA (2004) Phys Rev Lett 92:166103

    Article  Google Scholar 

  15. Yildirim T, Ciraci S (2005) Phys Rev Lett 94:175501

    Article  CAS  Google Scholar 

  16. Zhao Y, Kim YH, Dillon AC, Heben MJ, Zhang SB (2005) Phys Rev Lett 94:155504

    Article  Google Scholar 

  17. Yildirim T, Iniguez J, Ciraci S (2005) Phys Rev B 72:153403

    Article  Google Scholar 

  18. Cabria I, López MJ, Alonso JA (2005) J Chem Phys 123(20):204721

    Article  CAS  Google Scholar 

  19. Rojas MI, Leiva EPM (2007) Phys Rev B 76:2155415

    Article  Google Scholar 

  20. Liu W, Zhao YH, Nguyen J, Li Y, Jiang Q, Lavernia EJ (2009) Carbon 47:3452

    Article  CAS  Google Scholar 

  21. Lam PT, Dung PV, Sugiyama A, Duc ND, Shimoda T, Fujiwara A, Chi DH (2010) Comput Mat Sci 49:15

    Article  Google Scholar 

  22. Krasnov PO, Ding F, Singh AK, Yakobson BI (2007) J Phys Chem C Lett 111:17977

    Article  CAS  Google Scholar 

  23. Zhao Y, Kim Y-H, Dillon AC, Heben MJ, Zhang SB (2005) Phys Rev Lett 94:155504

    Article  Google Scholar 

  24. Ataca C, Aktrk E, Ciraci S, Ustunel H (2008) Appl Phys Lett 93:043123

    Article  Google Scholar 

  25. Chandrakumar KRS, Ghosh SK (2008) Nano Lett 8:13–19

    Article  CAS  Google Scholar 

  26. Shi G-S, Wang Z-G, Zhao J-J, Hu J, Fang H-P (2011) Chin Phys B 20:068101

    Article  Google Scholar 

  27. Zhang J (2003) PEM Fuel Cell Electro-catalysis and Catalysts Layers. Springer, London

    Google Scholar 

  28. Wieckowski, Elena R, Savinova, Constantinos G, Vayenas (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Dekker, New York

  29. Liu W, Zhao YH, Li Y, Jiang Q, Lavernia EJ (2009) J Phys Chem 113:2028

    CAS  Google Scholar 

  30. Chen P, Wu X, Lin J, Tan KL (1999) Science 285:91

    Article  CAS  Google Scholar 

  31. Cabria I, Lopez MJ, Alonso JA (2005) J Chem Phys 123:204721

    Article  CAS  Google Scholar 

  32. Sun Q, Jena P, Wang Q, Marquez M (2006) J Am Chem Soc 128:9741

    Article  CAS  Google Scholar 

  33. Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z (2008) Phys Rev Lett 100:206806

    Article  Google Scholar 

  34. Ordejon P, Artacho E, Soler JM (1996) Phys Rev B 53:10441

    Article  Google Scholar 

  35. Soler JM, Artacho E, Gale JD, Garćya A, Junquera J, Ordejon P, Sánchez-Portal D (2002) J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  37. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  38. Silly F, Shaw AQ, Castell MR, Briggs GAD, Mura M, Martsinovich N, Kantorovich L (2008) J Phys Chem C 112:11476

    Article  CAS  Google Scholar 

  39. Lukas M, Kelly R, Kantorovich L, Otero R, Xu W, Laesgaard E, Stensgaard I, Besenbacher F (2009) J Chem Phys 130:024705

    Article  Google Scholar 

  40. Ganji MD, Danesh N (2013) RSC Adv 3:22031–22038

  41. Román-Pérez G, Soler JM (2009) Phys Rev Lett 103(9):096102

    Article  Google Scholar 

  42. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  43. Thonhauser T, Cooper VR, Shen L, Aaron P, Per H, Langreth DC (2007) Phys Rev B 76(12):125112

    Article  Google Scholar 

  44. Gulans A, Puska MJ, Nieminen RM (2009) Phys Rev B 79:201105

    Article  Google Scholar 

  45. Heine T, Zhechkov L, Seifert G (2004) Phys Chem Chem Phys 6(5):980–984

    Article  CAS  Google Scholar 

  46. Amft M, Leb’egue S, Eriksson O, Skorodumova NV (2011) J Phys Condens Matter 23:395001

    Article  Google Scholar 

  47. Li YH, Hung TH, Chen CW (2009) Carbon 47:850–5

    Article  CAS  Google Scholar 

  48. Arellano JS, Molina LM, Rubio A, AlonsoJ A (2002) Chem Phys 117

  49. Henwood D, Carey JD (2007) Phys Rev B 75:245413

    Article  Google Scholar 

  50. Ganji MD (2008) Nanotechnology 19:025709

    Article  CAS  Google Scholar 

  51. Ganji MD (2008) Phys Lett A 372:3277

    Article  CAS  Google Scholar 

  52. Ganji MD (2009) Diam Relat Mater 18:662

    Article  CAS  Google Scholar 

  53. Ganji MD, Tajbakhsh M, Laffafchy M (2010) Solid State Sci 12:1547

    Article  CAS  Google Scholar 

  54. Ganji MD, Mirnejad A, Najafi A (2010) Sci Technol Adv Mater 11:045001

    Article  Google Scholar 

  55. Akira I, Masana Y, Hiroki A, Katsutoshi F (2008) J Phys Conf Ser 100:052087

    Article  Google Scholar 

  56. Longo RC, Carrete J, Gallego LJ (2011) Phys Rev B 83:235415

    Article  Google Scholar 

  57. Mulliken RS (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  58. Ganji MD, Yazdani H, Mirnejad A (2010) Phys E 42:2184

    Article  CAS  Google Scholar 

  59. Ganji MD, Ahaz B (2010) Commun Theor Phys 53:742

    Article  CAS  Google Scholar 

  60. Ganji MD, Yazdani H (2010) Chin Phys Lett 27:043102

    Article  Google Scholar 

  61. Ganji MD, Ahmadian N, Godarzi M, Khorrami HA (2011) J Comput Theor Nanosci 8:1392–1399

    Article  CAS  Google Scholar 

  62. Ganji MD, Fereidoon A, Khosravi A, Ahmadian N, Mohammadzadeh S (2012) Phys E 46:193

    Article  CAS  Google Scholar 

  63. Verma V, Jindal VK, Dharamvir K (2007) Nanotechnology 18:435711

    Article  Google Scholar 

  64. Fereidoon A, Ahangari MG, Ganji MD, Jahanshahi M (2012) Comput Mater Sci 53(377)

  65. Ganji MD, Fereidoon A, Jahanshahi M, Ghorbanzadeh Ahangari M (2012) Solid State Commun 152:1526

    Article  CAS  Google Scholar 

  66. Ganji MD, Fereidoon A, Jahanshahi M, Ghorbanzadeh Ahangari M (2012) J Comput Theor Nanosci 9:980–985

    Article  CAS  Google Scholar 

  67. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385

    Article  CAS  Google Scholar 

  68. Liu F, Ming P, Li J (2007) Phys Rev B 76:064120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Darvish Ganji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, A., Fereidoon, A., Ahangari, M.G. et al. First-principles vdW-DF study on the enhanced hydrogen storage capacity of Pt-adsorbed graphene. J Mol Model 20, 2230 (2014). https://doi.org/10.1007/s00894-014-2230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2230-8

Keywords

Navigation