Skip to main content
Log in

Knowledge infrastructures in science: data, diversity, and digital libraries

  • Published:
International Journal on Digital Libraries Aims and scope Submit manuscript

Abstract

Digital libraries can be deployed at many points throughout the life cycles of scientific research projects from their inception through data collection, analysis, documentation, publication, curation, preservation, and stewardship. Requirements for digital libraries to manage research data vary along many dimensions, including life cycle, scale, research domain, and types and degrees of openness. This article addresses the role of digital libraries in knowledge infrastructures for science, presenting evidence from long-term studies of four research sites. Findings are based on interviews (\(n=208\)), ethnographic fieldwork, document analysis, and historical archival research about scientific data practices, conducted over the course of more than a decade. The Transformation of Knowledge, Culture, and Practice in Data-Driven Science: A Knowledge Infrastructures Perspective project is based on a 2 \(\times \) 2 design, comparing two “big science” astronomy sites with two “little science” sites that span physical sciences, life sciences, and engineering, and on dimensions of project scale and temporal stage of life cycle. The two astronomy sites invested in digital libraries for data management as part of their initial research design, whereas the smaller sites made smaller investments at later stages. Role specialization varies along the same lines, with the larger projects investing in information professionals, and smaller teams carrying out their own activities internally. Sites making the largest investments in digital libraries appear to view their datasets as their primary scientific legacy, while other sites stake their legacy elsewhere. Those investing in digital libraries are more concerned with the release and reuse of data; types and degrees of openness vary accordingly. The need for expertise in digital libraries, data science, and data stewardship is apparent throughout all four sites. Examples are presented of the challenges in designing digital libraries and knowledge infrastructures to manage and steward research data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Articles for this special issue were invited from the “best papers” nominations from DL2014, the IEEE/ACM Joint Conference on Digital Libraries, London.

References

  1. Abazajian, K.N., Adelman-McCarthy, J.K., Agüeros, M.A., et al.: The seventh data release of the sloan digital sky survey. Astrophys. J. Suppl. Ser. 182(2), 543–558 (2009)

    Article  Google Scholar 

  2. ADS. The SAO/NASA Astrophysics Data System. (2015). http://www.adsabs.harvard.edu

  3. Ahn, C.P., Alexandroff, R., Allende Prieto, C., et al.: The ninth data release of the sloan digital sky survey: first spectroscopic data from the SDSS-III Baryon oscillation spectroscopic survey. Astrophys. J. Suppl. Ser. 203(2), 21 (2012)

    Article  Google Scholar 

  4. Arzberger, P., Schroeder, P., Beaulieu, A., et al.: An international framework to promote access to data. Science 303(5665), 1777–1778 (2004)

    Article  Google Scholar 

  5. Astronomy and Astrophysics Survey Committee: Astronomy and Astrophysics in the New Millennium. National Academy of Sciences, Washington, DC (2001)

    Google Scholar 

  6. Bechhofer, S., Ainsworth, J., Bhagat, J., et al.: Why Linked Data is Not Enough for Scientists. 2010 IEEE Sixth International Conference on e-Science (e-Science), pp. 300–307, (2010)

  7. Bell, G., Hey, T., Szalay, A.S.: Beyond the data deluge (Computer Science). Science 323(5919), 1297–1298 (2009)

    Article  Google Scholar 

  8. Berman, F., Cerf, V.G.: Who will pay for public access to research data? Science 341(6146), 616–617 (2013)

    Article  Google Scholar 

  9. Bicarregui, J., Gray, N., Henderson, R., Jones, R., Lambert, S., Matthews, B.: Data management and preservation planning for big science. Int. J. Digit. Curation 8(1), 29–41 (2013)

    Article  Google Scholar 

  10. Blocker, A.W., Meng, X.-L.: The potential and perils of preprocessing: building new foundations. Bernoulli 19(4), 1176–1211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borgman, C.L.: What are digital libraries? Compet. Vis. Inf. Process. Manag. 35(3), 227–243 (1999)

    Article  Google Scholar 

  12. Borgman, C.L.: Scholarship in the Digital Age: Information, Infrastructure, and the Internet. MIT Press, Cambridge (2007)

    Google Scholar 

  13. Borgman, C.L.: Big Data, Little Data, No Data: Scholarship in the Networked World. The MIT Press, Cambridge (2015)

    Google Scholar 

  14. Borgman, C.L., Bates, M., Cloonan, M., et al.: Social Aspects of Digital Libraries. Final Report to the National Science Foundation. (1996)

  15. Borgman, C.L., Bowker, G.C., Finholt, T.A., and Wallis, J.C.: Towards a virtual organization for data cyberinfrastructure. In: Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital Libraries, ACM, pp. 353–356 (2009)

  16. Borgman, C.L., Darch, P.T., Sands, A.E., Wallis, J.C., Traweek, S.: The ups and downs of knowledge infrastructures in science: implications for data management. 2014 IEEE/ACM Joint Conference on Digital Libraries (JCDL), IEEE Computer Society, pp. 257–266 (2014)

  17. Borgman, C.L., Traweek, S.: The transformation of knowledge, culture, and practice in data-driven science: a knowledge infrastructures perspective. 2012. http://knowledgeinfrastructures.gseis.ucla.edu/?page_id=50

  18. Borgman, C.L., Wallis, J.C., Enyedy, N.D.: Building digital libraries for scientific data: an exploratory study of data practices in habitat ecology. In: Proceedings of the 10th European Conference on Research and Advanced Technology for Digital Libraries, Springer Berlin Heidelberg, pp. 170–183 (2006)

  19. Borgman, C.L., Wallis, J.C., Enyedy, N.D.: Little science confronts the data deluge: habitat ecology, embedded sensor networks, and digital libraries. Int. J. Digital Libr. 7(1–2), 17–30 (2007)

    Article  Google Scholar 

  20. Borgman, C.L., Wallis, J.C., Mayernik, M.S.: Who’s got the data? Interdependencies in science and technology collaborations. Comput. Support. Coop. Work 21(6), 485–523 (2012)

    Article  Google Scholar 

  21. Borgman, C.L., Wallis, J.C., Mayernik, M.S., Pepe, A.: Drowning in data: digital library architecture to support scientific use of embedded sensor networks. Joint Conference on Digital Libraries, Association for Computing Machinery, pp. 269–277 (2007)

  22. Borne, K.D.: Planets Stars and Stellar Systems. In: Oswalt, T.D., Bond, H.E. (eds.) Virtual Observatories, Data Mining, and Astroinformatics. Springer, Netherlands (2013)

    Chapter  Google Scholar 

  23. Boulton, G., Campbell, P., Collins, B., et al.: Science as an Open Enterprise. The Royal Society, London (2012)

    Google Scholar 

  24. Bowker, G.C.: Memory Practices in the Sciences. MIT Press, Cambridge (2005)

    Google Scholar 

  25. Brunsmann, J., Wilkes, W., Schlageter, G., Hemmje, M.: State-of-the-art of long-term preservation in product lifecycle management. Int. J. Digital Libr. 12(1), 27–39 (2012)

    Article  Google Scholar 

  26. Capshew, J.H., Rader, K.A.: Big science: price to the present. Osiris 7, 2–25 (1992)

    Article  Google Scholar 

  27. Center for Dark Energy Biosphere Investigations. C-DEBI Strategic Implementation Plan, 2010–2015 (2010)

  28. Center for Dark Energy Biosphere Investigations. C-DEBI Data Management Philosophy and Policy. 2012

  29. Center for Dark Energy Biosphere Investigations. C-DEBI. (2014). http://www.darkenergybiosphere.org/

  30. Chompalov, I.: Lessons Learned from the Study of Multi-organizational Collaborations in Science and Implications for the Role of the University in the 21st Century. In: Herbst, M. (ed.) The Institution of Science and the Science of Institutions, pp. 167–184. Springer, Netherlands (2014)

    Chapter  Google Scholar 

  31. CODATA-ICSTI Task Group on Data Citation Standards and: Practices. Out of Cite, Out of Mind: The Current State of Practice, Policy, and Technology for the Citation of Data. Data Science Journal 12, 1–75 (2013)

  32. Collins, H.M.: LIGO becomes big science. Hist. Stud. Phys. Biol. Sci. 33(2), 261–297 (2003)

    Article  Google Scholar 

  33. Committee for a Decadal Survey of Astronomy and Astrophysics; National Research Council. New Worlds, New Horizons in Astronomy and Astrophysics. The National Academies Press, Washington, D.C., (2010)

  34. Committee on Ensuring the Utility and Integrity of Research Data in a Digital Age. Ensuring the Integrity, Accessibility, and Stewardship of Research Data in the Digital Age. National Academy Press, Washington, D.C. (2009)

  35. Cragin, M.H., Palmer, C.L., Carlson, J.R., Witt, M.: Data sharing, small science, and institutional repositories. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 368(1926), 4023–4038 (2010)

    Article  Google Scholar 

  36. Darch, P.T.: When Scientists Meet the Public: An Investigation into Citizen Cyberscience. (2011)

  37. Darch, P.T., Borgman, C.L.: Ship space to database: motivations to manage research data for the deep subseafloor biosphere. In: Proceedings of the 77th Annual Meeting of the Association for Information Science and Technology (2014)

  38. Darch, P.T., Borgman, C.L., Traweek, S., Cummings, R.L., Wallis, J.C., Sands, A.E.: What lies beneath? Knowledge infrastructures in the subseafloor biosphere and beyond. Int. J. Digital Libr. 16(1), 61–77 (2015)

  39. Darch, P.T., Sands, A.E.: Beyond big or little science: understanding data lifecycles in astronomy and the deep subseafloor biosphere. (2015)

  40. David, P.A.: The economic logic of ‘Open Science’ and the balance between private property rights and the public domain in scientific data and information: A primer. In: The Role of the Public Domain in Scientific Data and Information. National Academy Press, Washington, D.C., 19–34 (2003)

  41. Digital Curation Centre. What is digital curation? (2014). http://www.dcc.ac.uk/digital-curation/what-digital-curation

  42. Edwards, K.: Center for Dark Energy Biosphere Investigations (C-DEBI): A Center for Resolving the Extent. Function, Dynamics and Implications of the Subseafloor Biosphere (2009)

  43. Edwards, P.N.: A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. MIT Press, Cambridge (2010)

    Google Scholar 

  44. Edwards, P.N., Jackson, S.J., Chalmers, M.K., et al.: Knowledge Infrastructures: Intellectual Frameworks and Research Challenges. University of Michigan, Ann Arbor (2013)

    Google Scholar 

  45. Edwards, P.N., Mayernik, M.S., Batcheller, A.L., Bowker, G.C., Borgman, C.L.: Science friction: data, metadata, and collaboration. Soc. Stud. Sci. 41(5), 667–690 (2011)

    Article  Google Scholar 

  46. European Commission High Level Expert Group on Scientific Data. Riding the wave: How Europe can gain from the rising tide of scientific data. European Union (2010)

  47. Exploring Computer Science. Mobilize: Mobilizing for Innovative Computer Science Teaching and Learning. (2014). http://www.exploringcs.org/about/related-grants/mobilize

  48. Faniel, I.M., Jacobsen, T.E.: Reusing scientific data: how earthquake engineering researchers assess the reusability of colleagues’ data. J. Comput. Supported Coop. Work 19(3–4), 355–375 (2010)

    Article  Google Scholar 

  49. Fearon Jr., D.S., Borgman, C.L., Traweek, S., Wynholds, L.A.: Curators to the Stars (Poster). Annual Meeting of the American Society for Information Science & Technology (2010)

  50. Finkbeiner, A.K.: A Grand and Bold Thing: the Extraordinary New Map of the Universe Ushering in a New Era of Discovery. Free Press, New York (2010)

    Google Scholar 

  51. Frieman, J.: Dark energy survey. Bull. Am. Astron. Soc. 43, 20501 (2011)

    Google Scholar 

  52. Furner, J.: Little book, big book: before and after little science, big science: a review article, part I. J. Libr. Inf. Sci. 35(2), 115–125 (2003)

    Google Scholar 

  53. Furner, J.: Little book, big book: before and after little science, big science: a review article, part II. J. Libr. Inf. Sci. 35(3), 189–201 (2003)

    Google Scholar 

  54. Galison, P.: The Collective Author. Scientific authorship: Credit and intellectual property in science pp. 325–355 (2003)

  55. Galison, P., Hevly, B.W.: Big Science: The Growth of Large-Scale Research. Stanford University Press, Stanford (1992)

    Google Scholar 

  56. Gitelman, L. (ed.): Raw Data. Is an Oxymoron. The MIT Press, Cambridge (2013)

    Google Scholar 

  57. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Pub. Co., Chicago (1967)

    Google Scholar 

  58. Goodman, A.A., Pepe, A., Blocker, A.W., et al.: Ten simple rules for the care and feeding of scientific data. PLoS Comput. Biol. 10(4), e1003542 (2014)

    Article  Google Scholar 

  59. Gray, J., Liu, D.T., Nieto-Santisteban, M., Szalay, A.S., DeWitt, D.J., Heber, G.: Scientific data management in the coming decade. SIGMOD Rec. 34(4), 34–41 (2005)

    Article  Google Scholar 

  60. Gray, J., Slutz, D., Szalay, A.S., et al.: Data Mining the SDSS SkyServer Database. (2002)

  61. Gray, N., Carozzi, T.D., Woan, G.: Managing research data in big science. (2012). arXiv:1207.3923

  62. Greenberg, J.: Theoretical considerations of lifecycle modeling: an analysis of the dryad repository demonstrating automatic metadata propagation, inheritance, and value system adoption. Cat. Classif. Quart. 47(3–4), 380–402 (2009)

    Google Scholar 

  63. Heidorn, P.B.: Shedding light on the dark data in the long tail of science. Libr. Trends 57(2), 280–299 (2008)

    Article  Google Scholar 

  64. Hey, T., Trefethen, A.E.: Cyberinfrastructure for e-Science. Science 308(5723), 817–821 (2005)

    Article  Google Scholar 

  65. Higgins, S.: The DCC curation lifecycle model. Int. J. Digit. Curation 3(1), 134–140 (2008)

    Article  MathSciNet  Google Scholar 

  66. Higgins, S.: The lifecycle of data management. In: Managing Research Data. Facet Publishing; 1 st edn (January 31, 2012), p. 224 (2012)

  67. Humphrey, C.: e-Science and the Life Cycle of Research. (2008)

  68. IODP. International Ocean Discovery Program. (2014). http://iodp.org/

  69. Ivezic, Z., Tyson, J.A., Abel, B., et al. LSST: from science drivers to reference design and anticipated data products (Version 4.0). (2014). http://arxiv.org/abs/0805.2366

  70. Jackson, S.J., Buyuktur, A.: Who killed WATERS? Mess, method, and forensic explanation in the making and unmaking of large-scale science networks. Sci. Technol. Hum. Values 39(2), 285–308 (2014)

    Article  Google Scholar 

  71. Jackson, S.J., Ribes, D., Buyuktur, A., Bowker, G.C.: Collaborative rhythm: temporal dissonance and alignment in collaborative scientific work. In: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, ACM, pp. 245–254 (2011)

  72. Johns Hopkins University. Krieger Astronomer Awarded \(\$9.5\) Million to Create “Virtual Telescope. 2013. http://krieger.jhu.edu/blog/2013/11/04/krieger-astronomer-awarded-9-5-million-to-create-virtual-telescope/

  73. Karasti, H., Baker, K.S.: Digital data practices and the long term ecological research program growing global. Int. J. Digit. Curation 3(2), 42–58 (2008)

    Article  Google Scholar 

  74. Karasti, H., Baker, K.S., Halkola, E.: Enriching the notion of data curation in e-science: data managing and information infrastructuring in the long term ecological research (lter) network. J. Comput.-Support. Coop. Work 15(4), 321–358 (2006)

    Article  Google Scholar 

  75. Karasti, H., Baker, K.S., Millerand, F.: Infrastructure time: long-term matters in collaborative development. Comput. Support. Coop. Work (CSCW) 19(3–4), 377–415 (2010)

    Article  Google Scholar 

  76. Knorr-Cetina, K.: Epistemic Cultures: How the Sciences Make Knowledge. Harvard University Press, Cambridge (1999)

    Google Scholar 

  77. Lambright, W.H.: Government and science: a troubled, critical relationship and what can be done about it. Public Adm. Rev. 68(1), 5–18 (2008)

    Article  Google Scholar 

  78. Laney, D.: 3D Data Management: Controlling Data Volume. Velocity and Variety. META Group (Gartner) (2001)

  79. Latour, B., Woolgar, S.: Laboratory Life: The Construction of Scientific Facts. Princeton University Press, Princeton (1986)

    Google Scholar 

  80. Lenoir, T., Hays, M.: The Manhattan project for biomedicine. Controlling Our Destinies. Historical, Philosophical, Ethical, and Theological Perspectives on the Human Genome Project, pp. 29–62 (2000)

  81. Liu, X., Wang, Q., Zhou, Z.: IODP in Japan. Adv. Earth Sci. 4, 10 (2004)

    Google Scholar 

  82. LSST. Large Synoptic Survey Telescope: Timeline. 2013. http://www.lsst.org/lsst/science/timeline

  83. LSST Collaboration. Community Science Input and Participation. Large Synoptic Survey Telescope, 2013. http://www.lsst.org/lsst/science/participate

  84. LSST Science Collaboration, Abell, P.A., Allison, J., et al.: LSST Science Book, Version 2.0. (2009)

  85. Mandell, R.A.: Researchers’ Attitudes towards Data Discovery: Implications for a UCLA Data Registry. Social Science Research Network, Rochester (2012)

    Google Scholar 

  86. Maurer, B.A.: Models of Scientific Inquiry and Statistical Practice: Implications for the structure of scientific knowledge. In: The Nature of Scientific Evidence: Statistical, philosophical, and empirical considerations. The University of Chicago Press, Chicago, pp. 17–50 (2004)

  87. Mayernik, M.S.: Metadata Realities for Cyberinfrastructure: Data Authors as Metadata Creators. (2011). doi:10.2139/ssrn.2042653

  88. Mayernik, M.S., Wallis, J.C., Borgman, C.L.: Unearthing the infrastructure: humans and sensors in field-based research. Comput. Support. Coop. Work 22(1), 65–101 (2013)

    Article  Google Scholar 

  89. McCray, W.P.: Giant Telescopes: Astronomical Ambition and the Promise of Technology. Harvard University Press, Cambridge, MA (2004)

  90. Meyer, E.T., Schroeder, R.: Knowledge Machines: Digital Transformations of the Sciences and Humanities. MIT Press, Cambridge (2015)

    Google Scholar 

  91. Nexleaf. 2013. http://nexleaf.org/about-us-0

  92. Onsrud, H., Campbell, J.: Big opportunities in access to “Small Science” Data. Data Sci. J. 6, OD58–OD66 (2007)

    Article  Google Scholar 

  93. Orcutt, B.N., LaRowe, D.E., Biddle, J.F., et al.: Microbial activity in the marine deep biosphere: progress and prospects. Extreme Microbiol. 4, 189 (2013)

    Google Scholar 

  94. Palmer, C.L., Cragin, M.H., Heidorn, P.B., Smith, L.C.: Data Curation for the Long Tail of Science: The Case of Environmental Sciences (2007)

  95. Parsons, M.A., Fox, P.A.: Is data publication the right metaphor? Data Sci. J. 12, WDS32–WDS46 (2013)

    Google Scholar 

  96. Pepe, A., Goodman, A., Muench, A., Crosas, M., Erdmann, C.: How do astronomers share data? Reliability and persistence of datasets linked in AAS publications and a qualitative study of data practices among US astronomers. PLoS One 9(8), e104798 (2014)

    Article  Google Scholar 

  97. Pepe, A., Mayernik, M.S., Borgman, C.L., Van de Sompel, H.: From artifacts to aggregations: modeling scientific life cycles on the semantic web. J. Am. Soc. Inf. Sci. Technol. 61(3), 567–582 (2010)

    Google Scholar 

  98. Price, D.J. de S.: Little Science, Big Science. Columbia University Press, New York, NY, USA, (1963)

  99. Ray, J.M. (ed.): Research Data Management: Practical Strategies for Information Professionals. Purdue University Press, West Lafayette (2014)

    Google Scholar 

  100. Renear, A.H., Sacchi, S., Wickett, K.M.: Definitions of dataset in the scientific and technical literature. Proc. Am. Soc. Inf. Sci. Technol. 47(1), 1–4 (2010)

    Article  Google Scholar 

  101. Ribes, D., Jackson, S.J.: Data Bite Man: The Work of Sustaining a Long-Term Study. In: Gitelman, L., ed. “Raw Data” Is an Oxymoron. pp. 147–166. The MIT Press, Cambridge, MA (2013)

  102. Sands, A.E., Borgman, C.L., Traweek, S., Wynholds, L.A.: We’re working on it: transferring the sloan digital sky survey from laboratory to library. Int. J. Digit. Curation 9(2), 98–110 (2014)

    Article  Google Scholar 

  103. Schofield, P., Eppig, J., Huala, E., et al.: Sustaining the data and bioresource commons. Science 330, 592–593 (2010)

    Article  Google Scholar 

  104. SDSS. Sloan Digital Sky Survey (2014). http://www.sdss.org/

  105. Smith, R.W.: The Biggest Kind of Big Science: Astronomers and the Space Telescope. In: Galison, P., Hevly, B.W. (eds.) Big Science: The Growth of Large-scale Research, pp. 184–211. Stanford University Press, Stanford (1992)

    Google Scholar 

  106. Suber, P.: Open Access. MIT Press, Cambridge (2012)

    Google Scholar 

  107. Szalay, A.S.: Jim Gray, astronomer. Commun. ACM 51, 59–65 (2008)

    Article  Google Scholar 

  108. Thakar, A.R., Szalay, A.S., Fekete, G., Gray, J.: The catalog archive server database management system. Comput. Sci. Eng. 10(1), 30–37 (2008)

  109. Traweek, S.: Beamtimes and Lifetimes: The World of High Energy Physicists. Harvard University Press, Cambridge (1988)

    Google Scholar 

  110. Traweek, S.: Big Science as Colonialist Discourse: Regional Differences in Japanese High Energy Physics. In: Galison, P., Hevly, Bruce William (eds.) Big Science: The Growth of Large-scale Research, pp. 100–128. Stanford University Press, Stanford (1992)

    Google Scholar 

  111. Traweek, S.: Border Crossings: Narrative Strategies in Science Studies and Among High Energy Physicists at Tsukuba Science City, Japan. In: Science as Practice and Culture. University of Chicago Press, Chicago, pp. 429–465 (1992)

  112. Traweek, S.: Generating High Energy Physics in Japan: Moral Imperatives of a Future Pluperfect. In: Kaiser, D. (ed.) Pedagogy and Practice in Physics. MIT Press, Cambridge, MA (2004)

  113. Ucla, O.I.P.: Social entrepreneurship: nexleaf takes it to the next level. Invent. Intell. Prop. News 2, 3 (2010)

    Google Scholar 

  114. Vermeulen, N.: Supersizing Science: On Building Large-Scale Research Projects in Biology. Universal-Publishers Boca Raton, FL (2010)

  115. Wallis, J.C.: The Distribution of Data Management Responsibility within Scientific Research Groups (2012). http://search.proquest.com/docview/1029942726/abstract?accountid=14512

  116. Wallis, J.C., Borgman, C.L.: Who is Responsible for Data? An Exploratory Study of Data Authorship, Ownership, and Responsibility. Annual Meeting of the American Society for Information Science & Technology, Information Today, pp. 1–10 (2011)

  117. Wallis, J.C., Borgman, C.L., Mayernik, M.S., Pepe, A.: Moving archival practices upstream: an exploration of the life cycle of ecological sensing data in collaborative field research. Int. J. Digit. Curation 3(1), 114–126 (2008)

    Article  Google Scholar 

  118. Wallis, J.C., Borgman, C.L., Mayernik, M.S., Pepe, A., Ramanathan, N., Hansen, M.A.: Know Thy Sensor: Trust, Data Quality, and Data Integrity in Scientific Digital Libraries. In: Proceedings of the 11th European Conference on Research and Advanced Technology for Digital Libraries, Berlin: Springer, pp. 380–391 (2007)

  119. Wallis, J.C., Rolando, E., Borgman, C.L.: If We Share Data, Will anyone use them? Data sharing and reuse in the long tail of science and technology. PLoS One 8(7), e67332 (2013)

    Article  Google Scholar 

  120. Wray, K.B.: Scientific authorship in the age of collaborative research. Stud. Hist. Philos. Sci. Part A 37(3), 505–514 (2006)

    Article  Google Scholar 

  121. Wynholds, L.A., Fearon, D.S., Borgman, C.L., Traweek, S.: When Use Cases Are Not Useful: Data Practices, Astronomy, and Digital Libraries. In: Proceedings of the 11th Annual Joint Conference on Digital Libraries, ACM, pp. 383–386 (2011)

  122. Wynholds, L.A., Wallis, J.C., Borgman, C.L., Sands, A.E., Traweek, S. Data, Data Use, and Scientific Inquiry: Two Case Studies of Data Practices. In: Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries, Association for Computing Machinery, pp. 19–22 (2012)

  123. York, D.G., Adelman, J., Anderson, J.E., et al.: The sloan digital sky survey: technical summary. Astron. J. 120, 1579–1587 (2000)

    Article  Google Scholar 

  124. Zooniverse. Galaxy Zoo. 2014. http://www.galaxyzoo.org/

Download references

Acknowledgments

The research reported in this paper is supported by Alfred P. Sloan Foundation Award #20113194, The Transformation of Knowledge, Culture and Practice in Data-Driven Science: A Knowledge Infrastructures Perspective. We are grateful to our program officer, Joshua Greenberg, and to our external advisory board—Alyssa Goodman, George Djorgovski, and Alex Szalay—for their guidance and support. We also acknowledge the contributions of Laura A. Wynholds and David S. Fearon, Jr. for conducting early interviews; and Elaine Levia for technical, bibliographic, and administrative support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Borgman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgman, C.L., Darch, P.T., Sands, A.E. et al. Knowledge infrastructures in science: data, diversity, and digital libraries. Int J Digit Libr 16, 207–227 (2015). https://doi.org/10.1007/s00799-015-0157-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00799-015-0157-z

Keywords

Navigation