Skip to main content

Advertisement

Log in

Ecological succession of fungal and bacterial communities in Antarctic mosses affected by a fairy ring disease

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We evaluated fungal and bacterial diversity in an established moss carpet on King George Island, Antarctica, affected by ‘fairy ring’ disease using metabarcoding. A total of 127 fungal and 706 bacterial taxa were assigned. Ascomycota dominated the fungal assemblages, followed by Basidiomycota, Rozellomycota, Chytridiomycota, Mortierellomycota and Monoblepharomycota. The fungal community displayed high indices of diversity, richness and dominance, which increased from healthy through infected to dead moss samples. A range of fungal taxa were more abundant in dead rather than healthy or fairy ring moss samples. Bacterial diversity and richness were greatest in healthy moss and least within the infected fairy ring. The dominant prokaryotic phyla were Actinobacteriota, Proteobacteria, Bacteroidota and Cyanobacteria. Cyanophyceae sp., whilst consistently dominant, were less abundant in fairy ring samples. Our data confirmed the presence and abundance of a range of plant pathogenic fungi, supporting the hypothesis that the disease is linked with multiple fungal taxa. Further studies are required to characterise the interactions between plant pathogenic fungi and their host Antarctic mosses. Monitoring the dynamics of mutualist, phytopathogenic and decomposer microorganisms associated with moss carpets may provide bioindicators of moss health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

All raw sequences have been deposited in the NCBI database under the codes SAMN17612011, SAMN17612012, SAMN17612013, SAMN17612014, SAMN17612015, SAMN17612016 and SAMN17612017.

References

  • Abarenkov K, Allan Z, Timo P, Raivo P, Filipp I, Nilsson, Henrik R, Urmas K (2020) UNITE QIIME release for eukaryotes. Version 04.02.2020. UNITE Community. doi: https://doi.org/10.15156/BIO/786386

  • Amir A, McDonald D, Navas-Molina JA, et al. et al (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. https://doi.org/10.1128/mSystems.00191-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianchinotti MV, Rajchenberg M (2004) Coleophoma gevuinae comb. nov., a foliar pathogen on Gevuina avellana (Proteaceae). Sydowia –Horn 56:1–5

  • Bokulich N, Subramanian S, Faith J et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59

    CAS  Google Scholar 

  • Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90

    PubMed  PubMed Central  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Câmara PEAS, Soares A, Henriques D, Peralta D, Bordin J, Carvalho-Silva M, Stech M (2019) New insights into the species diversity of Bartramia Hedw. (Bryophyta) in Antarctica from a morpho-molecular approach. Antarct Sci 31:208–215

    Google Scholar 

  • Câmara PEAS, Convey P, Rangel SB et al (2021) The largest moss carpet transplant in Antarctica and its bryosphere cryptic biodiversity. Extremophiles 25:369–384

    PubMed  Google Scholar 

  • de Carvalho CR, Santiago IF, Coelho LC, Câmara PEAS, Carvalho-Silva M, Stech M, Rosa CA, Rosa LH et al (2019) Fungi associated with plants and lichens of antarctica. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Berlin, pp 165–199

    Google Scholar 

  • Chen S, Yao H, Han J et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5:e8613

    PubMed  PubMed Central  Google Scholar 

  • Crous PW, Groenewald JZ (2016) They seldom occur alone. Fungal Biol 12:1392–1415

    Google Scholar 

  • Crous PW, Summerell BA, Shivas RG et al (2012) Fungal planet description sheets: 107–127. Persoonia 28:138–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho CR, Ferreira MC, Gonçalves VN, Santos ARO, Carvalho-Silva M, Câmara PEAS, Rosa CA, Rosa LH (2020) Cultivable fungi associated with bryosphere of bipolar mosses Polytrichastrum alpinum and Polytrichum juniperinum in King George Island, South Shetland Islands, maritime Antarctica. Polar Biol 43:545–553

    Google Scholar 

  • de Souza LMD, Ogaki MB, Câmara PEAS, Pinto OHB, Convey P, Carvalho-Silva M, Rosa CA, Rosa LH (2021) Assessment of fungal diversity present in lakes of Maritime Antarctica using DNA metabarcoding: a temporal microcosm experiment. Extremophiles 25:77–84

    PubMed  Google Scholar 

  • Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, de Vere N, Pfrender ME, Bernatchez L (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895

    PubMed  Google Scholar 

  • Döbbeler P (1997) Biodiversity of Bryophilous Ascomycetes. Biodivers Conserv 6:721–738

    Google Scholar 

  • Fenton JHC (1983) Concentric fungal rings in Antarctic moss communities. Trans Br Mycol Soc 80:415–420

    Google Scholar 

  • Fuckel L (1874) Symbolae mycologicae. Zweiter Nachtrag. Jahrbu ̈cher desNassauischen Vereins fu ̈ r Naturkunde 27:1–99

  • Fudou R, Jojima Y, Iizuka T, Yamanaka S (2002) Haliangium ochraceumgen. nov., sp. nov. and Haliangium tepidumsp. nov.: novel moderately halophilic myxobacteria isolated from coastal saline environments. J Gen Appl Microbiol 48:109–115

    CAS  PubMed  Google Scholar 

  • Giner CR, Forn I, Romac S, Logares R, de Vargas C, Massana R (2016) Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol 82:4757–4766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossart HP, Wurzbacher C, James TY, Kagami M (2016) Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol 19:28–38

    Google Scholar 

  • Gu Y, Wang Y, Wang P, Wang C, Ma J, Yang X, Ma D, Li M (2020) Study on the diversity of fungal and bacterial communities in continuous cropping fields of Chinese chives (Allium tuberosum). BioMed Res Int. https://doi.org/10.1155/2020/3589758

    Article  PubMed  PubMed Central  Google Scholar 

  • Gueidan C, Aptroot A, Cáceres MES, Badali H, Stenroos S (2014) A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog 13:1027–1039

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electr 4:1–9

    Google Scholar 

  • Hashimoto A, Matsumura M, Hirayama K, Fujimoto R, Tanaka K (2017) Pseudodidymellaceae fam. nov.: phylogenetic affiliations of mycopappus-like genera in Dothideomycetes. Stud Mycol 87:187–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL (1973) Thyronectria antarctica (Speg.) Seeler var. hyperantarctica D. Hawksw. var. nov. Br Antarct Sur Bull 32:51–53

    Google Scholar 

  • He F, Lin B, Sun JZ, Liu XZ (2013) Knufia aspidiotus sp. nov., a new black yeast from scale insects. Phytotaxa 153:39–50

    Google Scholar 

  • Herlemann D, Labrenz M, Jürgens K et al (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hibbett DS, Bauer R, Binder M et al (2014) 14 Agaricomycetes. Systematics and evolution. Springer, Berlin, pp 373–429

    Google Scholar 

  • Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, Fierer N (2018) Novel bacterial lineages associated with boreal moss species. Environ Microbiol 20:2625–2638

    CAS  PubMed  Google Scholar 

  • Husson C, Scala B, Caël O, Frey P, Feau N, Ioos R, Marçais B (2011) Chalara fraxinea is an invasive pathogen in France. Eur J Plant Pathol 130:311–324

    Google Scholar 

  • Jaklitsch WM, Voglmayr H (2017) Three former taxa of Cucurbitaria and considerations on Petrakia in the Melanommataceae. Sydowia 69:81–95

    PubMed  PubMed Central  Google Scholar 

  • Joshi NA, Fass JN (2011) Sicle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software]. https://github.com/najoshi/sickle

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2011) Dictionary of the Fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1–e1

    CAS  PubMed  Google Scholar 

  • Kowalski T (2006) Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For Pathol 36:264–270

    Google Scholar 

  • Lawrey J, Diederich P (2003) Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist 106:80–120

    Google Scholar 

  • Liu X, Bolla K, Ashforth EJ, Zhuo Y, Gao H, Huang P, Stanley SA, Hung DT, Zhang L (2012) Systematics-guided bioprospecting for bioactive microbial natural products. Anton Van Leeuwenhoek 101:55–66

    Google Scholar 

  • Longton RE (1973) The occurrence of radial infection patterns in colonies of polar bryophytes. Br Antarct Sur Bull 32:41–49

    Google Scholar 

  • Madrid H, Hernández-Restrepo M, Gené J et al (2016) New and interesting chaetothyrialean fungi from Spain. Mycol Prog 15:1179–1201

    Google Scholar 

  • Medinger R, Nolte V, Pandey RV, Jost S, Ottenwälder B, Schlötterer C, Boenigk J (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40

    PubMed  PubMed Central  Google Scholar 

  • Möller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycologia 88:922–933

    Google Scholar 

  • Nakai R, Abe T, Baba T et al (2012) Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. Polar Biol 35:425–433

    Google Scholar 

  • Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Google Scholar 

  • Ngwene B, Boukail S, Söllner L et al (2016) Phosphate utilization by the fungal root endophyte Piriformospora indica. Plant Soil 405:231–241

    CAS  Google Scholar 

  • Ochyra R, Lewis-Smith RI, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinform 12:385

    Google Scholar 

  • Øvstedal DO, Lewis-Smith R (2001) Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge University Press, Cambridge, p 424

    Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636

    CAS  PubMed  Google Scholar 

  • Pandey KD, Shukla SP, Shukla PN, Giri DD (2004) Cyanobacteria in Antarctica: ecology, physiology and cold adaptation. Cell Mol Biol Paris Wegmann 50:575–584

    CAS  Google Scholar 

  • Park M, Lee H, Hong SG, Kim OS (2013) Endophytic bacterial diversity of an Antarctic moss, Sanionia uncinata. Antarct Sci 25:51

    Google Scholar 

  • Pawłowska J, Istel Ł, Gorczak M, Galera H, Wrzosek M, Hawksworth DL (2017) Psychronectria hyperantarctica, gen. nov., comb. nov., epitypification and phylogenetic position of an Antarctic bryophilous ascomycete. Mycologia 109:601–607

    PubMed  Google Scholar 

  • Pearce DA, Newsham KK, Thorne MA, Calvo-Bado L, Krsek M, Laskaris P, Hodson A, Wellington EM (2012) Metagenomic analysis of a southern maritime Antarctic soil. Front Microbiol 3:403

    PubMed  PubMed Central  Google Scholar 

  • Polashock JJ, Caruso FL, Oudemans PV, McManus PS, Crouch JA (2009) The North American cranberry fruit rot fungal community: a systematic overview using morphological and phylogenetic affinities. Plant Pathol 58:1116–1127

    Google Scholar 

  • Prather HM, Casanova-Katny A, Clements AF et al (2019) Species-specific effects of passive warming in an Antarctic moss system. R Soc Open Sci 6:190744

    PubMed  PubMed Central  Google Scholar 

  • Putzke J, Pereira AB (2012) Fungos muscícolas na Ilha Elefante-Antártica. Cad Pesq Biol 24:155–164

    Google Scholar 

  • Racovitza A (1959) É tude systematique et biologique des champignons bryophiles. Mém Mus NaTl Hist Nat Sér B Bot 10:1–288

    Google Scholar 

  • Raymond JA (2016) Dependence on epiphytic bacteria for freezing protection in an Antarctic moss, Bryum argenteum. Environ Microbiol Rep 8:14–19

    CAS  PubMed  Google Scholar 

  • Reichenbach H (1999) The ecology of the myxobacteria. Environ Microbiol 1:15–21

    CAS  PubMed  Google Scholar 

  • Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM (2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci 3:1400066

    Google Scholar 

  • Robinson SA, King DH, Bramley-Alves J et al (2018) Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat Clim Change 8:879–884

    CAS  Google Scholar 

  • Rosa LH, de Sousa JRP, de Menezes GCA et al (2020a) Opportunistic fungal assemblages present on fairy rings spread on different moss species in the Antarctic Peninsula. Polar Biol 43:587–596

    Google Scholar 

  • Rosa LH, da Silva TH, Ogaki MB et al (2020b) DNA metabarcoding uncovers fungal diversity in soils of protected and non-protected areas on Deception Island, Antarctica. Sci Rep 10:1–9

    Google Scholar 

  • Rosa LH, Pinto OHB, Šantl-Temkiv T et al (2020c) DNA metabarcoding of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica. Sci Rep 10:1–11

    Google Scholar 

  • Rosa LH, Pinto OHB, Convey P et al (2021) DNA metabarcoding to assess the diversity of airborne fungi present over Keller Peninsula, King George Island, Antarctica. Microbial Ecol 82:165–172

    CAS  Google Scholar 

  • Rosa LH, Zani CL, Cantrell CL, Duke SO, Van Dijck P, Desideri A, Rosa CA (2019) Fungi in Antarctica: diversity, ecology, efects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, New York, pp 1–17

  • Smith RIL (1984) Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws RM (ed) Antarctic ecology, vol 1. Academic Press, London, pp 61–162

    Google Scholar 

  • Sutton BC (1980) The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, Surrey, England

  • Taton A, Grubisic S, Brambilla E, de Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U et al (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Div 90:135–159

    Google Scholar 

  • Tojo M, van West P, Hoshino T et al (2012) Pythium polare, a new heterothallic oomycete causing brown discolouration of Sanionia uncinata in the Arctic and Antarctic. Fungal Biol 116:756–768

    PubMed  Google Scholar 

  • Tosi S, Casado B, Gerdol R (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Tsuneda A, Hambleton S, Currah RS (2011) The anamorph genus Knufia and its phylogenetically allied species in Coniosporium, Sarcinomyces and Phaeococcomyces. Botany 89:523–536

    Google Scholar 

  • Untereiner WA, Gueidan C, Orr MJ, Diederich P (2011) The phylogenetic position of the lichenicolous ascomycete Capronia peltigerae. Fungal Div 49:225–233

    Google Scholar 

  • van de Vossenberg BTLH, Warris S, Nguyen HDT et al (2019) Comparative genomics of chytrid fungi reveal insights into the obligate biotrophic and pathogenic lifestyle of Synchytrium endobioticum. Sci Rep 9:8672

    PubMed  PubMed Central  Google Scholar 

  • Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131

    Google Scholar 

  • Verma A, Varma A, Rexer K-H et al (1998) Piriformospora indica, gen. et sp. nov., a new root colonizing fungus. Mycologia 90:896–903

    CAS  Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarc Sci 12:374–385

    Google Scholar 

  • Wang S, Tang JY, Ma J, Li XD, Li YH (2018) Moss habitats distinctly affect their associated bacterial community structures as revealed by the high-throughput sequencing method. World J Microbiol Biotechnol 34:58

    CAS  PubMed  Google Scholar 

  • Weiß M, Waller F, Zuccaro A, Selosse MA (2016) Sebacinales—one thousand and one interactions with land plants. New Phytol 211:20–40

    PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S et al (1990) Amplifcation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, London, pp 315

  • Wilson JW (1951) Observations on concentric “fairy rings” in Arctic moss mat. J Ecol 39:407–416

    Google Scholar 

  • Yadav V, Kumar M, Deep DK et al (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan ZQ (1996) Fungi and associated tree diseases in Melville Island, Northern Territory, Australia. Aus Syst Bot 9:337–360

    Google Scholar 

  • Zhang T et al (2013) Molecular analysis of fungal diversity associated with three bryophyte species in the Fildes Region, King George Island, Maritime Antarctica. Extremophiles 17:757–765

    PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from PROANTAR CNPq (442258/2018-6), INCT Criosfera, FAPEMIG, CAPES and FNDCT. P. Convey is supported by NERC core funding to the British Antarctic Survey’s ‘Biodiversity, Evolution and Adaptation’ Team. We also thank congresswoman Jô Moraes and the Biological Sciences Institute of the University of Brasilia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Henrique Rosa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by A. Oren.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, L.H., da Costa Coelho, L., Pinto, O.H.B. et al. Ecological succession of fungal and bacterial communities in Antarctic mosses affected by a fairy ring disease. Extremophiles 25, 471–481 (2021). https://doi.org/10.1007/s00792-021-01240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-021-01240-1

Keywords

Navigation