Skip to main content
Log in

Geothermal springs in Armenia and Nagorno-Karabakh: potential sources of hydrolase-producing thermophilic bacilli

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

In recent years, scientists have increasingly focused on the microbial diversity of high-altitude hot springs to explore the biotechnological applications of extremophiles. In this regard, a total of 107 thermophilic bacilli were isolated from 9 high-altitude mineralized geothermal springs (of temperatures ranging from 27.5 to 70 °C) located within the territory of Armenia and Nagorno-Karabakh. The isolated bacilli were phylogenetically profiled and studied for their potential to produce extracellular hydrolytic enzymes (protease, amylase, and lipase). The identification of isolates based on 16S rRNA gene sequences revealed their relationship to members of more than 22 distinct species, of 8 different genera, namely Aeribacillus, Anoxybacillus, Bacillus, Brevibacillus, Geobacillus, Parageobacillus, Paenibacillus and Ureibacillus. Bacillus licheniformis, Parageobacillus toebii and Anoxybacillus flavithermus were found to be the most abundant species in the springs that were studied. Some of the isolated bacilli shared less than 91–97% sequence identity with their closest match in GenBank, indicating that Armenian geothermal springs harbor novel bacilli, at least at the species level. 71% of the isolates actively produced at least one or more extracellular proteases, amylases, or lipases. In total, 22 strains (28.6%) were efficient producers of all three types of thermostable enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source of the map is https://map-caucasus.com

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aanniz TM, Ouadghiri M, Melloul M, Swings J, Elfahime E, Ibijbijen J, Ismaili M, Amar M (2015) Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz J Microbiol 46:443–453

    PubMed  PubMed Central  Google Scholar 

  • Adiguzel A, Ozkan H, Baris O, Inan K, Gulluce M, Sahin F (2009) Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J Microbiol Methods 79:321–328

    CAS  PubMed  Google Scholar 

  • Aliyu H, Lebrea P, Blom J, Cowan D, De Maayer P (2018) Corrigendum to Phylogenomic re-assessment of the thermophilic genus Geobacillus [Syst. Appl. Microbiol. 39 (2016) 527–533]. Syst Appl Microbiol 41:529–530

    PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amin A, Ahmed I, Salam N, Kim BY, Singh D, Zhi XY, Xiao M, Li WJ (2017) Diversity and distribution of thermophilic bacteria in hot springs of Pakistan. Microb Ecol 74:116–127

    PubMed  Google Scholar 

  • Arya M, Joshi GK, Gupta AK, Kumar A, Raturi A (2015) Isolation and characterization of thermophilic bacterial strains from Soldhar (Tapovan) hot spring in Central Himalayan Region, India. Ann Microbiol 65:1457–1464

    CAS  Google Scholar 

  • Belduz AO, Dulger S, Demirbag Z (2003) Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320

    CAS  PubMed  Google Scholar 

  • Bowen De León K, Gerlach R, Peyton BM, Fields MW (2013) Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin Yellowstone National Park. Front Microbiol 4:330

    PubMed  PubMed Central  Google Scholar 

  • Bryanskaya AV, Rozanov AS, Slynko NM, Shekhovtsov SV, Peltek SE (2015) Geobacillus icigianus sp. nov., a thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 65:864–869

    CAS  PubMed  Google Scholar 

  • Burgess AE, Unrine JM, Mills GL, Romanek CS, Wiegel J (2012) Comparative geochemical and microbiological characterization of two thermal ponds in the Uzon Caldera, Kamchatka, Russia. Microb Ecol 63:471–489

    PubMed  Google Scholar 

  • Chakravorty D, Patra S (2013) Attaining extremophiles and extremolytes: methodologies and limitations. In: Singh OV (ed) Extremophiles: Sustainable resources and biotechnological implications. Wiley, Hoboken, pp 29–74

    Google Scholar 

  • Chan CS, Chan KG, Tay YL, Chua YH, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:177

    PubMed  PubMed Central  Google Scholar 

  • Cihan AC, Ozcan B, Tekin N, Cokmus C (2011) Phylogenetic diversity of isolates belonging to genera Geobacillus and Aeribacillus isolated from different geothermal regions of Turkey. World J Microbiol Biotechnol 27:2683–2696

    Google Scholar 

  • DeCastro ME, Rodríguez-Belmonte E, González-Siso MI (2016) Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Front Microbiol 7:1521

    PubMed  PubMed Central  Google Scholar 

  • Deep K, Poddar A, Das AK (2013) Anoxybacillus suryakundensis sp. nov, a moderately thermophilic, alkalitolerant bacterium isolated from hot spring at Jharkhand India. PLoS ONE 8(12):e85493

    PubMed  PubMed Central  Google Scholar 

  • Deepika M, Satyanarayana T (2013) Diversity of hot environments and thermophilic microbes. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 3–60

    Google Scholar 

  • Derekova A, Mandeva R, Kambourova M (2008) Phylogenetic diversity of thermophilic carbohydrate degrading bacilli from Bulgarian hot springs. World J Microbiol Biotechnol 24:1697–1702

    CAS  Google Scholar 

  • Edwards TA, Calica NA, Huang DA, Manoharan N, Hou W, Huang L, Panosyan H, Dong H, Hedlund BP (2013) Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia. FEMS Microbiol Ecol 85:283–292

    CAS  PubMed  Google Scholar 

  • Elleuche S, Antranikian G (2013) Starch-hydrolyzing enzymes from thermophiles. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 509–533

    Google Scholar 

  • Flores PA, Amenábar MJ, Blamey JM (2013) Hot environments from Antarctica: source of thermophiles and hyperthermophiles, with potential biotechnological applications. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 99–118

    Google Scholar 

  • Fooladi J, Sajjadian A (2010) Screening the thermophilic and hyperthermophilic bacterial population of three Iranian hot-springs to detect the thermostable α-amylase producing strain. Iran J Microbiol 2:46–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, Illias RM, Chan KG (2013) Recent discoveries and applications of Anoxybacillus. Appl Microbiol Biotechnol 97:1475–1488

    CAS  PubMed  Google Scholar 

  • Gomri MA, Khaldi TEM, Kharroub K (2018) Analysis of the diversity of aerobic, thermophilic endospore-forming bacteria in two Algerian hot springs using cultural and non-cultural methods. Ann Microbiol 68:915–929

    CAS  Google Scholar 

  • Guven K, Bekler FM, Guven RG (2018) Thermophilic and halophilic microorganisms isolated from extreme environments of Turkey, with potential biotechnological applications. In: Egamberdieva D, Birkeland NK, Panosyan H, Li WJ (eds) Extremophiles in Eurasian ecosystems: ecology, diversity, and applications. Springer, Singapore, pp 219–264

    Google Scholar 

  • Hedlund BP, Dodsworth JA, Cole JK, Panosyan HH (2013) An integrated study reveals diverse methanogens, Thaumarchaeota, and yet-uncultivated archaeal lineages in Armenian hot springs. Antonie Van Leeuwenhoek 104:71–82

    PubMed  Google Scholar 

  • Heinen W, Lauwers AM, Mulders JWM (1982) Bacillus flavothermus, a newly isolated facultative thermophile. Antonie Van Leeuwenhoek 48:265–272

    CAS  PubMed  Google Scholar 

  • Henneberger R, Cooksley D, Hallberg J (2000) Geothermal resources of Armenia. In: Proceedings World Geothermal Congress. Kyushu-Tohoku, pp 1217–1222

  • Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, Huang Q, Huang L, Wu G, Zhi X, Li W, Dodsworth JA, Hedlund BP, Zhang C, Hartnett HE, Dijkstra P, Hungate BA (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan province China using 16S rRNA gene pyrosequencing. PLoS ONE 8(1):e53350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hreggvidsson GO, Petursdottir SK, Bjornsdottir SH, Fridjonsson OH (2012) Microbial speciation in the geothermal ecosystem. In: Stan H, Fendrihan LS (eds) Adaption of microbial life to environmental extremes: novel research results and application. Springer, Wien, pp 37–68

    Google Scholar 

  • Hussein EI, Jacob JH, Shakhatreh MAK, Al-razaq MAA, Juhmani AF, Cornelison CT (2017) Exploring the microbial diversity in Jordanian hot springs by comparative metagenomic analysis. Microbiol Open 6:e521

    Google Scholar 

  • Islam T, Larsen Ø, Torsvik V, Øvreås L, Panosyan H, Murrell C, Birkeland NK, Bodrossy L (2015) Novel methanotrophs of the Family Methylococcaceae from different geographical regions and habitats. Microorganisms 3:484–499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kevbrin VV, Zengler K, Lysenko AM, Wiegel J (2005) Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser Valley. Kamchatka Extremophiles 9:391–398

    CAS  PubMed  Google Scholar 

  • Krebs JE, Vaishampayan P, Probst AJ, Tom LM, Marteinsson VT, Andersen GL, Venkateswaran K (2014) Microbial community structures of novel Icelandic hot spring systems revealed by PhyloChip G3 analysis. Astrobiology 14:229–240

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-López O, Cerdán ME, González-Siso MI (2013) Hot spring metagenomics. Life 3:308–320

    PubMed  PubMed Central  Google Scholar 

  • López-López O, Knapik K, Cerdán ME, González-Siso MI (2015) Metagenomics of an alkaline hot spring in Galicia (Spain): microbial diversity analysis and screening for novel lipolytic enzymes. Front Microbiol 6:1291

    PubMed  PubMed Central  Google Scholar 

  • Magnabosco C, Tekere M, Lau MCY, Linage B, Kuloyo O, Erasmus M, Cason E, van Heerden E, Borgonie G, Kieft TL, Olivier J, Onstott TC (2014) Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water. Front Microbiol 5:679

    PubMed  PubMed Central  Google Scholar 

  • Margaryan A, Shahinyan G, Hovhannisyan P, Panosyan H, Birkeland NK, Trchounian A (2018) Geobacillus and Anoxybacillus sp. from terrestrial geothermal springs worldwide: Diversity and biotechnological applications. In: Egamberdieva D, Birkeland NK, Panosyan H, Li WJ (eds) Extremophiles in Eurasian ecosystems: ecology, diversity, and applications. Springer, Singapore, pp 119–166

    Google Scholar 

  • Mehta D, Satyanarayana T (2013) Diversity of hot environments and thermophilic microbes. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 3–60

    Google Scholar 

  • Mehta R, Singhal P, Singh H, Damle D, Sharma AK (2016) Insight into thermophiles and their wide-spectrum applications. 3 Biotech 6:81

    PubMed  PubMed Central  Google Scholar 

  • Merkel AY, Pimenov NV, Rusanov II, Slobodkin AI, Slobodkina GB, Tarnovetckii IY, Frolov EN, Dubin AV, Perevalova AA, Bonch-Osmolovskaya EA (2017) Microbial diversity and autotrophic activity in Kamchatka hot springs. Extremophiles 21:307–317

    CAS  PubMed  Google Scholar 

  • Mkrtchyan S (1969) Geology of Armenian SSR. Publishing house of AS of ASSR, Yerevan (in Russian)

    Google Scholar 

  • Mohammad BT, Daghistani HIA, Jaouani A, Abdel-Latif S, Kennes C (2017) Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol 2017:6943952

    PubMed  PubMed Central  Google Scholar 

  • Namsaraev ZB, Babasanova OB, Dunaevsky YE, Akimov VN, Barkhutova DD, Gorlenko VM, Namsaraev BB (2010) Anoxybacillus mongoliensis sp. nov., a novel thermophilic proteinase producing bacterium isolated from alkaline hot spring. Central Mongolia Microbiol 79:491–499

    CAS  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446

    CAS  PubMed  Google Scholar 

  • Ogg CD, Spanevello MD, Patel BKC (2013) Exploring the ecology of thermophiles from Australia’s Great Artesian Basin during the genomic era. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 61–97

    Google Scholar 

  • Panosyan H (2019) Thermoactinomycetes isolated from geothermal springs in Armenia capable of producing extracellular hydrolases. Environ Sustain 2:219–226

    CAS  Google Scholar 

  • Panosyan H, Birkeland NK (2014) Microbial diversity in an Armenian geothermal spring assessed by molecular and culture-based methods. J Basic Microbiol 54:1240–1250

    CAS  PubMed  Google Scholar 

  • Panosyan HH (2017) Thermophilic bacilli isolated from Armenian geothermal springs and their potential for production of hydrolytic enzymes. Int J Biotech Bioeng 3:239–244

    Google Scholar 

  • Panosyan H, Di Donato P, Poli A, Nicolaus B (2018a) Production and characterization of exopolysaccharides by Geobacillus thermodenitrificans ArzA-6 and Geobacillus toebii ArzA-8 strains isolated from an Armenian geothermal spring. Extremophiles 22:725–737

    CAS  PubMed  Google Scholar 

  • Panosyan H, Margaryan A, Poghosyan L, Saghatelyan A, Gabashvili E, Jaiani E, Birkeland NK (2018b) Microbial diversity of terrestrial geothermal springs in Lesser Caucasus. In: Egamberdieva D, Birkeland NK, Panosyan H, Li WJ (eds) Extremophiles in Eurasian ecosystems: ecology, diversity, and applications. Springer, Singapore, pp 81–117

    Google Scholar 

  • Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G and Laurinavichius K (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavitherms comb. nov, Int J Syst Evol Microbiol, 50(6): 2109–2117.

  • Poddar A, Das SK (2018) Microbiological studies of hot springs in India: a review. Arch Microbiol 200:1–18

    CAS  PubMed  Google Scholar 

  • Poli A, Romano I, Cordella P, Orlando P, Nicolaus B, Berrini C (2009) Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme Italy. Extremophiles 13:867–874

    PubMed  Google Scholar 

  • Power JF, Carere CR, Lee CK, Wakerley GLJ, Evans DW, Button M, White D, Climo MD, Hinze AM, Morgan XC, McDonald IR, Cary SC, Stott MB (2018) Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun 9:2876

    PubMed  PubMed Central  Google Scholar 

  • Priya I, Dhar MK, Bajaj BK, Koul S, Vakhlu J (2016) Cellulolytic activity of thermophilic bacilli isolated from Tattapani hotsSpring sediment in North West Himalayas. Indian J Microbiol 56:228–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99:7907–7913

    CAS  PubMed  Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: Potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:118

    PubMed  PubMed Central  Google Scholar 

  • Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian G (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saxena R, Dhakan DB, Mittal P, Waiker P, Chowdhury A, Ghatak A, Sharma VK (2017) Metagenomic analysis of hot springs in Central India reveals hydrocarbon degrading thermophiles and pathways essential for survival in extreme environments. Front Microbiol 7:2123

    PubMed  PubMed Central  Google Scholar 

  • Sayeh R, Birrien JL, Alain K, Barbier G, Hamdi M, Prieur D (2010) Microbial diversity in Tunisian geothermal springs as detected by molecular and culture-based approaches. Extremophiles 14:501–514

    CAS  PubMed  Google Scholar 

  • Schleifer K-H (2009) Phylum XIII. Firmicutes gibbons and Murray. In: De Vos P, et al. (eds) Bergey’s Manual® of systematic bacteriology: volume three the firmicutes. Springer, New York, pp 19–1317

    Google Scholar 

  • Smibert R, Krieg N (1981) General characteristics. In: Gerhardt P, Murray R, Costilow R, Nester E, Wood W, Phillips G (eds) Manual of methods for general bacteriology, 3rd edn. American Society for Microbiology, Washington, pp 7–243

    Google Scholar 

  • Shahinyan G, Margaryan AA, Panosyan HH, Trchounian AH (2017) Identification and sequence analysis of novel lipase encoding novel thermophilic bacilli isolated from Armenian geothermal springs. BMC Microbiol 17:103

    PubMed  PubMed Central  Google Scholar 

  • Sharma R, Thakur V, Sharma M, Birkeland NK (2013) Biocatalysis through thermostable lipases: adding flavor to chemistry. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 905–927

    Google Scholar 

  • Sharp RJ, Riley PW, White D (1992) Heterotrophic thermophilic bacilli. In: Kristjanssono JK (ed) Thermophilic bacteria. CRC Press, Boca Raton, pp 19–41

    Google Scholar 

  • Stefanova K, Tomova I, Tomova A, Radchenkova N, Atanassov I, Kambourova M (2015) Archaeal and bacterial diversity in two hot springs from geothermal regions in Bulgaria as demonstrated by 16S rRNA and GH-57 genes. Int Microbiol 18:217–223

    CAS  PubMed  Google Scholar 

  • Sung MH, Kim H, Bae JW, Rhee SK, Jeon CO, Kim K, Kim JJ, Hong SP, Lee SG, Yoon JH, Park YH, Baek DH (2002) Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol 52(6):2251–2255

  • Suzuki H (2018) Peculiarities and biotechnological potential of environmental adaptation by Geobacillus species. Appl Microbiol Biotechnol 102:10425–10437

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Kishigami T, Inoue K, Mizoguchi Y, Eto N, Takagi M, Abe S (1983) Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic Bacilli. Syst Appl Microbiol 4:487–495

    CAS  PubMed  Google Scholar 

  • Takacs-Vesbach C, Mitchell K, Jakson-Weaver O, Reysenbach AL (2008) Volcanic calderas delineate biogeographi provinces among Yellowstone thermophiles. Environ Microbiol 10:1681–1689

    CAS  PubMed  Google Scholar 

  • Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, et al. (eds) Methods for general and molecular microbiology. American Society for Microbiology, Washington, DC, pp 330–393

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urbieta MS, Gonzalez-Toril E, Bazan AA, Giaveno MA, Donati E (2015) Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquen, Argentina). Extremophiles 19:437–450

    CAS  PubMed  Google Scholar 

  • Wang S, Hou W, Dong H, Jiang H, Huang L, Wu G, Zhang C, Song Z, Zhang Y, Ren H, Zhang J, Zhang L (2013) Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS ONE 8(5):e62901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographical barriers isolate endemic population of hyperthermophilic archaea. Science 301:976–978

    CAS  PubMed  Google Scholar 

  • Yadav P, Korpole S, Prasad GS, Sahni G, Maharjan J, Sreerama L, Bhattarai T (2018) Morphological, enzymatic screening, and phylogenetic analysis of thermophilic bacilli isolated from five hot springs of Myagdi. Nepal J App Biol Biotech 6:1–8

    Google Scholar 

  • Zhang CM, Huang XW, Pan WZ, Zhang J, Wei KB, Klenk HP, Tang SK, Li WJ, Zhang KQ (2011) Anoxybacillus tengchongensis sp. nov. and Anoxybacillus eryuanensis sp. nov., facultatively anaerobic, alkalitolerant bacteria from hot springs. Int J Syst Evol Microbiol 61:18–122

    Google Scholar 

Download references

Acknowledgements

This work was supported by the RA MES State Committee of Science, within the scope of the research projects №15T-1F399 and №18T-1F261, the Armenian National Science and Education Fund based in New York, USA, to HP (ANSEF-NS-microbio 2493, 3362 and 4676) and partially supported grants from the Norwegian Agency for International Cooperation and Quality Enhancement (CPEA-LT-2016/10095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hovik Panosyan.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Additional information

Communicated by H. Atomi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 5892 kb)

Supplementary file2 (TIF 4333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panosyan, H., Margaryan, A. & Birkeland, NK. Geothermal springs in Armenia and Nagorno-Karabakh: potential sources of hydrolase-producing thermophilic bacilli. Extremophiles 24, 519–536 (2020). https://doi.org/10.1007/s00792-020-01173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-020-01173-1

Keywords

Navigation