Skip to main content
Log in

The genes and enzymes of sucrose metabolism in moderately thermophilic methanotroph Methylocaldum szegediense O12

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Four enzymes involved in sucrose metabolism: sucrose phosphate synthase (Sps), sucrose phosphate phosphatase (Spp), sucrose synthase (Sus) and fructokinase (FruK), were obtained as his-tagged proteins from the moderately thermophilic methanotroph Methylocaldum szegediense O12. Sps, Spp, FruK and Sus demonstrated biochemical properties similar to those of other bacterial counterparts, but the translated amino acid sequences of Sps and Spp displayed high divergence from the respective microbial enzymes. The Sus of M. szegediense O12 catalyzed the reversible reaction of sucrose cleavage in the presence of ADP or UDP and preferred ADP as a substrate, thus implying a connection between sucrose and glycogen metabolism. Sus-like genes were found only in a few methanotrophs, whereas amylosucrase was generally used in sucrose cleavage in this group of bacteria. Like other microbial fructokinases, FruK of M. szegediense O12 showed a high specificity to fructose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akutsu J, Zhang Z, Morita R, Kawarabayasi Y (2015) Identification and characterization of a thermostable bifunctional enzyme with phosphomannose isomerase and sugar-1-phosphate nucleotidylyltransferase activities from a hyperthermophilic archaeon, Pyrococcus horikoshii OT3. Extremophiles 19(6):1077–1085

    Article  CAS  PubMed  Google Scholar 

  • Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldumgen. nov. Arch Microbiol 168:493–503

    Article  CAS  PubMed  Google Scholar 

  • Bruneau JM, Worrell AC, Cambou B, Lando D, Voelker TA (1991) Sucrose phosphate synthase, a key enzyme for sucrose biosynthesis in plants. Plant Physiol 96:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • But SY, Rozova ON, Khmelenina VN, Reshetnikov AS, Trotsenko YA (2012) Properties of recombinant ATP dependent fructokinase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Biochemistry (Moscow) 77:372–377

    Article  CAS  Google Scholar 

  • But SY, Khmelenina VN, Reshetnikov AS, Trotsenko YA (2013a) Bifunctional sucrose phosphate synthase/phosphatase is involved in the sucrose biosynthesis by Methylobacillus flagellatus KT. FEMS Microbiol Lett 347:43–51

    Article  CAS  PubMed  Google Scholar 

  • But SY, Khmelenina VN, Reshetnikov AS, Trotsenko YA (2013b) Construction and characterization of Methylomicrobium alcaliphilum 20Z knockout mutants defective in sucrose and ectoine biosynthesis genes. Microbiology (Moscow) 82(2):253–255

    Article  CAS  Google Scholar 

  • But SY, Khmelenina VN, Reshetnikov AS, Mustakhimov II, Kalyuzhnaya MG, Trotsenko YA (2015) Sucrose metabolism in halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Arch Microbiol 197(3):471–480

    Article  CAS  PubMed  Google Scholar 

  • Caescu C, Vidal O, Krzewinski O, Artenie V, Bouquelet S (2004) Bifidobacterium longum requires a fructokinase (Frk; ATP:d-fructose-6-phosphotransferase, EC 2.7.1.4) for fructose catabolism. J Bacteriol 186:6515–6525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cumino A, Ekeroth C, Salerno GL (2001) Sucrose-phosphate phosphatase from Anabaena sp. strain PCC 7120: isolation of the protein and gene revealed significant structural differences from the higher-plant enzyme. Planta 214(2):250–256

    Article  CAS  PubMed  Google Scholar 

  • Cumino AC, Marcozzi C, Barreiro R, Salerno GL (2007) Carbon cycling in Anabaena sp. PCC 7120. Sucrose synthesis in the heterocysts and possible role in nitrogen fixation. Plant Phys 143:1385–1397

    Article  CAS  Google Scholar 

  • Curatti L, Desplats EFP, Abratti G, Limones V, Herrera-Estrella L, Salerno G (1998) Sucrose-phosphate synthase from Synechocystis sp. PCC 6803: identification of the spsA gene and characterization of the enzyme expressed in Escherichia coli. J Bacteriol 180:6776–6779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curatti L, Giarrocco LE, Cumino AC, Salerno GL (2008) Sucrose synthase is involved in the conversion of sucrose to polysaccharides in filamentous nitrogen-fixing cyanobacteria. Planta 228:617–625

    Article  CAS  PubMed  Google Scholar 

  • Diricks M, De Bruyn F, Van Daele P, Walmagh M, Desmet T (2015) Identification of sucrose synthase in nonphotosynthetic bacteria and characterization of the recombinant enzymes. Appl Microbiol Biotechnol 99:8465–8474

    Article  CAS  PubMed  Google Scholar 

  • Ehira S, Kimura S, Miyazaki S, Ohmori M (2014) Sucrose synthesis in the nitrogen-fixing Cyanobacterium Anabaena sp. strain PCC 7120 is controlled by the two-component response regulator OrrA. Appl Environ Microbiol 80:5672–5679

    Article  PubMed  PubMed Central  Google Scholar 

  • Eshinimaev BTS, Medvedkova KA, Khmelenina VN, Suzina NE, Osipov GA, Lysenko AM, TrotsenkoIu A (2004) New thermophilic methanotrophs of the genus Methylocaldum. Mikrobiologiia (Moscow) 73:530–539

    Google Scholar 

  • Figueroa CM, AsenciónDiez MD, Kuhn ML, McEwen S, Salerno GL, Iglesias AA, Ballicora MA (2013) The unique nucleotide specificity of the sucrose synthase from Thermosynechococcus elongatus. FEBS Lett 587:165–169

    Article  CAS  PubMed  Google Scholar 

  • Islam T, Larsen Ø, Torsvik V, Øvreås L, Panosyan H, Murrell JC, Birkeland N-K, Bodrossy L (2015) Novel methanotrophs of the family Methylococcaceae from different geographical regions and habitats. Microorganisms 3:484–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Khmelenina VN, Kalyuzhnaya MG, Sakharovsky VG, Suzina NE, Trotsenko YA, Gottschalk G (1999) Osmoadaptation in halophilic and alkaliphilicmethanotrophs. Arch Microbiol 172:321–329

    Article  CAS  PubMed  Google Scholar 

  • King K, Phan P, Rellos P, Scopes RK (1996) Overexpression, purification, and generation of a thermostable variant of Zymomonas mobilis fructokinase. Protein Expr Purif 7:373–376

    Article  CAS  PubMed  Google Scholar 

  • Klähn S, Hagemann M (2011) Compatible solute biosynthesis in cyanobacteria. Environ Microbiol 13:551–562

    Article  PubMed  Google Scholar 

  • Klotz KL, Finger FL, Shelver WL (2003) Characterization of two sucrose synthase isoforms in sugar beet root. Plant Physiol Biochem 41:107–115

    Article  CAS  Google Scholar 

  • Kolman MA, Torres LL, Martin ML, Salerno GL (2012) Sucrose synthase in unicellular cyanobacteria and its relationship with salt and hypoxic stress. Planta 235:955–964

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lunn J (2002) Evolution of sucrose synthesis Plant Physiol 128:1490–1500

    CAS  PubMed  Google Scholar 

  • Lunn JE, Price GD, Furbank RT (1999) Cloning and expression of a prokaryotic sucrose-phosphate synthase gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 40:297–305

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Noël GM, Cumino AC, KolmanMde L, Salerno GL (2013) First evidence of sucrose biosynthesis by single cyanobacterial bimodular proteins. FEBS Lett 587:1669–1674

    Article  PubMed  Google Scholar 

  • Medvedkova KA, Khmelenina VN, Trotsenko YA (2007) Sucrose as a factor of thermal adaptation of the thermophilic methanotroph Methylocaldum szegediense O-12. Mikrobiologiya (Moscow) 76:500–502

    Article  CAS  Google Scholar 

  • Medvedkova KA, Khmelenina VN, Baskunov BP, TrotsenkoIu A (2008) Synthesis of melanine by a moderately thermophilic methanotroph Methylocaldum szegediense O-12 depends on cultivation temperature. Mikrobiologiya (Moscow) 77:126–128

    CAS  Google Scholar 

  • Murao S, Nakatani A, Kaneda N (1995) Isolation and characterization of fructokinase from Pseudomonas sp. KN-21. Biosci Biotechnol Biochem 59:1798–1800

    Article  CAS  Google Scholar 

  • Porchia AC, Curatti L, Salerno GL (1999) Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence. Planta 210:34–40

    Article  CAS  PubMed  Google Scholar 

  • Reshetnikov AS, Khmelenina VN, Trotsenko YA (2006) Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph “Methylomicrobium alcaliphilum 20Z”. Arch Microbiol 184:286–297

    Article  CAS  PubMed  Google Scholar 

  • Rozova ON, Khmelenina VN, Vuilleumier S, Trotsenko YA (2010) Characterization of recombinant pyrophosphate-dependent 6-phosphofructokinase from halotolerant methanotroph Methylomicrobium alcaliphilum20Z. Res Microbiol 161:861–868

    Article  CAS  PubMed  Google Scholar 

  • Salerno GL, Curatti L (2003) Origin of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci 8:63–69

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sinha AK, Pathre U, Sane PV (1997) Purification and characterization of sucrose-phosphate synthase from Prosopis juliflora. Phytochemistry 46:441–447

    Article  CAS  Google Scholar 

  • Slater GG (1969) Stable pattern formation and determination of molecular size by pore-limit electrophoresis. Anal Chem 41(8):1039–1041

    Article  CAS  PubMed  Google Scholar 

  • Thomson JD, Gibson TJ, Plewniak Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882

    Article  Google Scholar 

  • Torres LL, Salerno GL (2007) A metabolic pathway leading to mannosylfructose biosynthesis in Agrobacterium tumefaciens uncovers a family of mannosyltransferases. Proc Natl Acad Sci USA 104:14318–14323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter H, Huber S (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67

    Article  CAS  Google Scholar 

  • Wu B, Zhang Y, Zheng R, Guo C, Wang PG (2002) Bifunctional phosphomannose isomerase/GDP-d-mannose pyrophosphorylase is the point of control for GDP-d-mannose biosynthesis in Helicobacter pylori. FEBS Lett 519:87–92

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Shan J, Zhang J, Zhang X, Xie S, Liu Y (2014) Ammonia- and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils. Appl Microbiol Biotechnol 98:10197–10209

    Article  CAS  PubMed  Google Scholar 

  • Yen SF, Su JC, Sung HY (1994) Purification and characterization of rice sucrose synthase isozymes. Biochem Mol Biol Int 34:613–620

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research #16-04-00462-a and by the Russian Scientific Foundation #18-14-00326. The authors are grateful to all members of the Organization for Methanotroph Genome Analysis for their collaboration (OMeGA), the U.S. Department of Energy Joint Genome Institute and Genoscope for the access to methanotrophic genomes for comparative analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Y. But.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

But, S.Y., Solntseva, N.P., Egorova, S.V. et al. The genes and enzymes of sucrose metabolism in moderately thermophilic methanotroph Methylocaldum szegediense O12. Extremophiles 22, 433–445 (2018). https://doi.org/10.1007/s00792-018-1006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-018-1006-y

Keywords

Navigation