Skip to main content
Log in

Biomineralisation of carbonate and sulphate by the halophilic bacterium Halomonas maura at different manganese concentrations

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The ability of Halomonas maura to bioprecipitate carbonate and sulphate crystals in solid media at different manganese concentrations has been demonstrated in this study for the first time. The precipitated minerals were studied by X-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The precipitated minerals were different based on the manganese concentration present in the medium and the incubation time. In the absence of manganese, H. maura formed pseudokutnahorite crystals; in the presence of manganese, the concentration in the culture medium determined the precipitation carbonates, such as rhodochrosite and dolomites. However, in the presence of low concentrations of manganese chloride (MnCl2) (5 g/l), kutnohorite crystals were also formed. Finally, when H. maura was grown in the presence of manganese, small amounts of sulphate crystals (such as bassanite and gypsum) were detected. Our study of the precipitated minerals showed an active role of H. maura in the biomineralisation process, but the geochemical conditions, and the manganese concentrations in particular, were clearly influential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aloisi G, Gloter A, Krüger M et al (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34:1017–1020

    Article  CAS  Google Scholar 

  • Arias S, del Moral A, Ferrer MR et al (2003) Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326

    Article  CAS  PubMed  Google Scholar 

  • Bosak T, Souza-Egipsy V, Newman D (2004) A laboratory model of abiotic peloid formation. Geobiology 2:189–198

    Article  CAS  Google Scholar 

  • Bouchotroch S, Quesada E, del Moral A et al (2001) Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632

    Article  CAS  PubMed  Google Scholar 

  • Cailleau G, Braissant O, Dupraz C et al (2005) Biologically induced accumulations of CaCO3 in orthox soils of Biga, Ivory Coast. Catena 59:1–17

    Article  CAS  Google Scholar 

  • Calvert S, Pedersen T (1996) Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shales. Econ Geol 91:36–47

    Article  CAS  Google Scholar 

  • Chekroun KB, Rodríguez-Navarro C, González-Muñoz MT et al (2004) Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: implications for recognition of bacterial carbonates. J Sediment Res 74:868–876

    Article  Google Scholar 

  • Deelman J (2003) Low-temperature formation of dolomite and magnesite. Compact Disc Publications, Eindhoven

    Google Scholar 

  • Delgado G, Delgado R, Parraga J et al (2008) Precipitation of carbonates and phosphates by bacteria in extract solutions from a semi-arid saline soil. Influence of Ca2+ and Mg2+ concentrations and Mg2+/Ca2+ molar ratio in biomineralization. Geomicrobiol J 25:1–13

    Article  CAS  Google Scholar 

  • Ehrlich HL, Newman DK, Kappler A (2015) Ehrlich’s geomicrobiology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Lee JH, Kennedy DW, Dohnalkova A et al (2011) Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction. Environ Microbiol 13:3275–3288

    Article  CAS  PubMed  Google Scholar 

  • Martin JD (2004) Using XPowder: a software package for Powder X-ray diffraction analysis. DL GR 1001:105

    Google Scholar 

  • Párraga J, Rivadeneyra M, Delgado R et al (1998) Study of biomineral formation by bacteria from soil solution equilibria. React Funct Polymers 36:265–271

    Article  Google Scholar 

  • Peckmann J, Paul J, Thiel V (1999) Bacterially mediated formation of diagenetic aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central Germany). Sediment Geol 126:205–222

    Article  CAS  Google Scholar 

  • Politi Y, Arad T, Klein E et al (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164

    Article  CAS  PubMed  Google Scholar 

  • Rivadeneyra MA, Párraga J, Delgado R et al (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    Article  CAS  PubMed  Google Scholar 

  • Rivadeneyra MA, Martín-Algarra A, Sánchez-Navas A, Martín-Ramos D (2006) Carbonate and phosphate precipitation by Chromohalobacter marismortui. Geomicrobiol J 23:1–13

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Martín-Algarra A, Sánchez-Román M et al (2010) Amorphous Ca-phosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui. ISME J 4:922–932

    Article  CAS  PubMed  Google Scholar 

  • Rivadeneyra A, Rivadeneyra MA, Escamilla CV et al (2016) The influence of salt concentration on the precipitation of magnesium calcite and calcium dolomite by Halomonas anticariensis. Expert Opin Environ Biol 5:2

    Article  Google Scholar 

  • Sánchez-Román M, Rivadeneyra MA, Vasconcelos C, McKenzie JA (2007) Biomineralization of carbonate and phosphate by moderately halophilic bacteria. FEMS Microbiol Ecol 61:273–284

    Article  PubMed  Google Scholar 

  • Silva-Castro GA, Uad I, Rivadeneyra A et al (2013) Carbonate precipitation of bacterial strains isolated from sediments and seawater: formation mechanisms. Geomicrobiol J 30:840–850

    Article  CAS  Google Scholar 

  • Silva-Castro GA, Uad I, Gonzalez-Martinez A et al (2015) Bioprecipitation of calcium carbonate crystals by bacteria isolated from saline environments grown in culture media amended with seawater and real brine. BioMed Res Int 2015:Article ID 816102

    Article  Google Scholar 

  • Subow NN (1931) Oceanographical tables. USSR Oceanographic Institute Hydrometeorological Commission, Moscow, pp 208

    Google Scholar 

  • Torres AR, Martinez-Toledo M, Gonzalez-Martinez A et al (2013) Precipitation of carbonates by bacteria isolated from wastewater samples collected in a conventional wastewater treatment plant. Int J Environ Sci Technol 10:141–150

    Article  Google Scholar 

  • Vali H, Koster H (1986) Expanding behaviour, structural disorder, regular and random irregular interstratification of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy. Clay Miner 21:827–859

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almudena Rivadeneyra.

Additional information

Communicated by H. Atomi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivadeneyra, A., Gonzalez-Martinez, A., Portela, G.R. et al. Biomineralisation of carbonate and sulphate by the halophilic bacterium Halomonas maura at different manganese concentrations. Extremophiles 21, 1049–1056 (2017). https://doi.org/10.1007/s00792-017-0965-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-017-0965-8

Keywords

Navigation