Skip to main content
Log in

Role of F225 in O-phosphoserine sulfhydrylase from Aeropyrum pernix K1

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

O-Phosphoserine sulfhydrylase (OPSS) synthesizes cysteine from O-phospho-l-serine (OPS) and sulfide. We have determined the three-dimensional structures of OPSS from hyperthermophilic archaeon Aeropyrum pernix K1 (ApOPSS) in complex with aminoacrylate intermediate (AA) formed from pyridoxal 5′-phosphate with OPS or in complex with cysteine and compared them with that of ApOPSS. We found an orientational change of F225 at the active-site entrance and constructed an F225A mutant to examine its activities and AA stability and clarify the role of F225 in ApOPSS. The OPS and O-acetyl-l-serine (OAS) sulfhydrylase activities of the F225A mutant decreased by 4.2- and 15-fold compared to those of the wild-type (wt) ApOPSS, respectively. The ability of OPS and OAS to form AA also decreased by 12- and 27-fold, respectively. AA was less stable in the F225A mutant than in the wt ApOPSS. Simulated docking showed that leaving groups, such as phosphate and acetate, were oriented to the inside of the active site in the F225A mutant, whereas they were oriented to the entrance in the wt ApOPSS. These results suggest that F225 in ApOPSS plays important roles in maintaining the hydrophobic environment of AA from solvent water and in controlling the orientation of leaving groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

Aminoacrylate intermediate

ApOPSS:

OPSS from hyperthermophilic archaeon Aeropyrum pernix K1

OAS:

O-Acetyl-l-serine

OASS:

OAS sulfhydrylase

OPS:

O-Phospho-l-serine

OPSS:

OPS sulfhydrylase

wt:

Wild-type

References

  • Ågren D, Schnell R, Oehlmann W, Singh M, Schneider G (2008) Cysteine synthase (CysM) of Mycobacterium tuberculosis is an O-phosphoserine sulfhydrylase: evidence for an alternative cysteine biosynthesis pathway in mycobacteria. J Biol Chem 283:31567–31574

    Article  PubMed  Google Scholar 

  • Ali V, Nozaki T (2007) Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by “amitochondriate” protozoan parasites. Clin Microbiol Rev 20:164–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amadasi A et al (2007) Pyridoxal 5′-phosphate enzymes as targets for therapeutic agents. Curr Med Chem 14:1291–1324

    Article  CAS  PubMed  Google Scholar 

  • Borup B, Ferry JG (2000) Cysteine biosynthesis in the Archaea: Methanosarcina thermophila utilizes O-acetylserine sulfhydrylase. FEMS Microbiol Lett 189:205–210

    Article  CAS  PubMed  Google Scholar 

  • Burkhard P, Tai CH, Ristroph CM, Cook PF, Jansonius JN (1999) Ligand binding induces a large conformational change in O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 291:941–953

    Article  CAS  PubMed  Google Scholar 

  • Colin-Gonzalez AL, Ali SF, Tunez I, Santamaria A (2015) On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: an update. Neurochem Int 89:83–91

    Article  CAS  PubMed  Google Scholar 

  • Cook PF, Hara S, Nalabolu S, Schnackerz KD (1992) pH dependence of the absorbance and 31P NMR spectra of O-acetylserine sulfhydrylase in the absence and presence of O-acetyl-l-serine. Biochemistry 31:2298–2303

    Article  CAS  PubMed  Google Scholar 

  • Dominguez L, Sosa-Peinado A, Hansberg W (2014) How catalase recognizes H(2)O(2) in a sea of water. Proteins 82:45–56

    Article  CAS  PubMed  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  • Fishelovitch D, Shaik S, Wolfson HJ, Nussinov R (2009) Theoretical characterization of substrate access/exit channels in the human cytochrome P450 3A4 enzyme: involvement of phenylalanine residues in the gating mechanism. J Phys Chem B 113:13018–13025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint DH, Tuminello JF, Miller TJ (1996) Studies on the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase in escherichia coli crude extract. Isolation of O-acetylserine sulfhydrylases A and B and beta-cystathionase based on their ability to mobilize sulfur from cysteine and to participate in Fe-S cluster synthesis. J Biol Chem 271:16053–16067

    Article  CAS  PubMed  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto J, Kataoka R, Muta H, Hirayama N (2008) ASEDock-docking based on alpha spheres and excluded volumes. J Chem Inf Model 48:583–590

    Article  CAS  PubMed  Google Scholar 

  • Hooper C, Calvert J (2008) The role for S-carboxymethylcysteine (carbocisteine) in the management of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulm Dis 3:659–669

    CAS  Google Scholar 

  • Jurgenson CT, Burns KE, Begley TP, Ealick SE (2008) Crystal structure of a sulfur carrier protein complex found in the cysteine biosynthetic pathway of Mycobacterium tuberculosis. Biochemistry 47:10354–10364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawarabayasi Y et al (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6(83–101):145–152

    Article  Google Scholar 

  • Kearsley SK (1989) on the orthogonal transformation used for structural comparisons. Acta Crystallogr A 45:208–210

    Article  Google Scholar 

  • Lovell SC et al (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

  • Maier TH (2003) Semisynthetic production of unnatural l-alpha-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat Biotechnol 21:422–427

    Article  CAS  PubMed  Google Scholar 

  • Mino K, Ishikawa K (2003a) Characterization of a novel thermostable O-acetylserine sulfhydrylase from Aeropyrum pernix K1. J Bacteriol 185:2277–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mino K, Ishikawa K (2003b) A novel O-phospho-l-serine sulfhydrylation reaction catalyzed by O-acetylserine sulfhydrylase from Aeropyrum pernix K1. FEBS Lett 551:133–138

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Kawai Y, Kunimoto K, Iwasaki Y, Nishii K, Kataoka M, Ishikawa K (2012) Structural analysis of the substrate recognition mechanism in O-phosphoserine sulfhydrylase from the hyperthermophilic archaeon Aeropyrum pernix K1. J Mol Biol 422:33–44

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Asai S, Nakata K, Kunimoto K, Oguri M, Ishikawa K (2015) Thermostability and reactivity in organic solvent of O-phospho-l-serine sulfhydrylase from hyperthermophilic archaeon Aeropyrum pernix K1. Biosci Biotechnol Biochem 79:1280–1286

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Mino K, Ishikawa K, Ataka M (2005) Three-dimensional structure of a new enzyme, O-phosphoserine sulfhydrylase, involved in l-cysteine biosynthesis by a hyperthermophilic archaeon, Aeropyrum pernix K1, at 2.0A resolution. J Mol Biol 351:334–344

    Article  CAS  PubMed  Google Scholar 

  • O’Leary SE, Jurgenson CT, Ealick SE, Begley TP (2008) O-phospho-l-serine and the thiocarboxylated sulfur carrier protein CysO-COSH are substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis. Biochemistry 47:11606–11615

    Article  PubMed  PubMed Central  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr Part A 276:307–326

    Article  CAS  Google Scholar 

  • Petrin D, Delgaty K, Bhatt R, Garber G (1998) Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev 11:300–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabeh WM, Alguindigue SS, Cook PF (2005) Mechanism of the addition half of the O-acetylserine sulfhydrylase-A reaction. Biochemistry 44:5541–5550

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Kimura N, Ikegami F, Noji M (1997) Production of plant non-protein amino acids by recombinant enzymes of sequential biosynthetic reactions in bacteria. Biol Pharm Bull 20:47–53

    Article  CAS  PubMed  Google Scholar 

  • Sako Y et al (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 °C. Int J Syst Bacteriol 46:1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Schnell R, Oehlmann W, Singh M, Schneider G (2007) Structural insights into catalysis and inhibition of O-acetylserine sulfhydrylase from Mycobacterium tuberculosis. Crystal structures of the enzyme alpha-aminoacrylate intermediate and an enzyme-inhibitor complex. J Biol Chem 282:23473–23481

    Article  CAS  PubMed  Google Scholar 

  • Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363

    Article  PubMed  Google Scholar 

  • Schwert GW (1969a) The estimation of kinetic constants for the Lactate dehydrogenase system by the use of integrated rate equations. J Biol Chem 244:1285–1290

    CAS  PubMed  Google Scholar 

  • Schwert GW (1969b) Use of integrated rate equations in estimating the kinetic constants of enzyme-catalyzed reactions. J Biol Chem 244:1278–1284

    CAS  PubMed  Google Scholar 

  • Steiner EM, Both D, Lossl P, Vilaplana F, Schnell R, Schneider G (2014) CysK2 from Mycobacterium tuberculosis is an O-phospho-l-serine-dependent S-sulfocysteine synthase. J Bacteriol 196:3410–3420

    Article  PubMed  PubMed Central  Google Scholar 

  • Tai CH, Nalabolu SR, Jacobson TM, Minter DE, Cook PF (1993) Kinetic mechanisms of the A and B isozymes of O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2 using the natural and alternative reactants. Biochemistry 32:6433–6442

    Article  CAS  PubMed  Google Scholar 

  • Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography Acta Crystallogr D Biol Crystallogr 50:760–763

  • Tian H et al (2010) Identification of the structural determinants for the stability of substrate and aminoacrylate external Schiff bases in O-acetylserine sulfhydrylase-A. Biochemistry 49:6093–6103

    Article  CAS  PubMed  Google Scholar 

  • Westrop GD, Goodall G, Mottram JC, Coombs GH (2006) Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine. J Biol Chem 281:25062–25075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Ohno K, Sogoh K, Imamura K, Sakiyama T, Nakanishi K (2004) Production of nonproteinaceous amino acids using recombinant Escherichia coli cells expressing cysteine synthase and related enzymes with or without the secretion of O-acetyl-l-serine. J Biosci Bioeng 97:322–328

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Kumada Y, Imanaka H, Imamura K, Nakanishi K (2006) Cloning, overexpression, purification, and characterization of O-acetylserine sulfhydrylase-B from Escherichia coli. Protein Expr Purif 47:607–613

    Article  CAS  PubMed  Google Scholar 

  • Zocher G, Wiesand U, Schulz GE (2007) High resolution structure and catalysis of O-acetylserine sulfhydrylase isozyme B from Escherichia coli. FEBS J 274:5382–5389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Masafumi Shionyu, Tsuyoshi Shirai, Yasushi Kawai, and Yoshisuke Nishi at the Nagahama Institute of Bio-Science and Technology for helpful discussions related to this work. The X-ray diffraction data were obtained on beamline BL44XU (Proposal No. 2009A6928) of SPring-8, Hyogo, Japan with the approval of the Japan Synchrotron Radiation Research Institute. M.K. was supported by the National Institute of Advanced Industrial Science and the Technology Innovation School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nakamura.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, E., Kunimoto, K., Kawai, Y. et al. Role of F225 in O-phosphoserine sulfhydrylase from Aeropyrum pernix K1. Extremophiles 20, 733–745 (2016). https://doi.org/10.1007/s00792-016-0862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0862-6

Keywords

Navigation