Skip to main content
Log in

Parallelizing spectral deferred corrections across the method

  • Original Article
  • Published:
Computing and Visualization in Science

Abstract

In this paper we present two strategies to enable “parallelization across the method” for spectral deferred corrections (SDC). Using standard low-order time-stepping methods in an iterative fashion, SDC can be seen as preconditioned Picard iteration for the collocation problem. Typically, a serial Gauß–Seidel-like preconditioner is used, computing updates for each collocation node one by one. The goal of this paper is to show how this process can be parallelized, so that all collocation nodes are updated simultaneously. The first strategy aims at finding parallel preconditioners for the Picard iteration and we test three choices using four different test problems. For the second strategy we diagonalize the quadrature matrix of the collocation problem directly. In order to integrate non-linear problems we employ simplified and inexact Newton methods. Here, we estimate the speed of convergence depending on the time-step size and verify our results using a non-linear diffusion problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouzarth, E.L., Minion, M.L.: A multirate time integrator for regularized Stokeslets. J. Comput. Phys. 229(11), 4208–4224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burrage, K.: Parallel methods for initial value problems. Appl. Numer. Math. 11(1–3), 5–25 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burrage, K.: Parallel methods for ODEs. Adv. Comput. Math. 7, 1–3 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order integrators. SIAM J. Sci. Comput. 32(2), 818–835 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feng, Z.: Traveling wave behavior for a generalized fisher equation. Chaos Solitons Fractals 38(2), 481–488 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gander, M.J., Halpern, L., Ryan, J., Tran, T.T.B.: A Direct Solver for Time Parallelization, pp. 491–499. Springer, Cham (2016)

    MATH  Google Scholar 

  9. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer, Heidelberg, New York (2010)

    MATH  Google Scholar 

  10. Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214(2), 633–656 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jackson, K.R., Kværnø, A., Nørsett, S.P.: The use of butcher series in the analysis of Newton-like iterations in Runge-Kutta formulas. Appl. Numer. Math. 15(3), 341–356 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jackson, K.R., Nørsett, S.P.: The potential for parallelism in Runge-Kutta methods. part 1: RK formulas in standard form. SIAM J. Numer. Anal. 32(1), 49–82 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jay, L.O.: Inexact simplified newton iterations for implicit Runge-Kutta methods. SIAM J. Numer. Anal. 38(4), 1369–1388 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001). http://www.scipy.org/. Accessed 2 Feb 2017

  15. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. No. 16 in Frontiers in Applied Mathematics. SIAM (1995)

  16. Layton, A.T., Minion, M.L.: Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys. 194(2), 697–715 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. Comptes Rendus de l’Acadmie des Sciences - Series I - Mathematics 332, 661–668 (2001)

    MATH  Google Scholar 

  18. Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1(3), 471–500 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Minion, M.L.: Semi-implicit projection methods for incompressible flow based on spectral deferred corrections. Appl. Numer. Math. 48(3–4), 369–387 (2004). Workshop on Innovative Time Integrators for PDEs

  20. Ruprecht, D., Speck, R.: Spectral deferred corrections with fast-wave slow-wave splitting. SIAM J. Sci. Comput. 38(4), A2535–A2557 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Speck, R.: Parallel-in-time/pySDC: parallel SDC (2017). https://doi.org/10.5281/zenodo.376982. http://www.parallelintime.org/pySDC/

  22. Speck, R., Ruprecht, D., Emmett, M., Minion, M., Bolten, M., Krause, R.: A multi-level spectral deferred correction method. BIT Numer. Math. 55(3), 843–867 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Speck, R., Ruprecht, D., Minion, M., Emmett, M., Krause, R.: Inexact spectral deferred corrections. In: Dickopf, T., Gander, J.M., Halpern, L., Pavarino, F.L., Pavarino, F.L. (eds.) Domain Decomposition Methods in Science and Engineering XXII, pp. 389–396. Springer, Berlin (2016)

    Chapter  Google Scholar 

  24. Tang, T., Xie, H., Yin, X.: High-order convergence of spectral deferred correction methods on general quadrature nodes. J. Sci. Comput. 56(1), 1–13 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Van Der Houwen, P., Sommeijer, B.: Parallel iteration of high-order Runge-Kutta methods with stepsize control. J. Comput. Appl. Math. 29(1), 111–127 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. van der Houwen, P., Sommeijer, B.: Analysis of parallel diagonally implicit iteration of Runge-Kutta methods. Appl. Numer. Math. 11(1), 169–188 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weiser, M.: Faster SDC convergence on non-equidistant grids by DIRK sweeps. BIT Numer. Math. 55(4), 1219–1241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Winkel, M., Speck, R., Ruprecht, D.: A high-order Boris integrator. J. Comput. Phys. 295, 456–474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xia, Y., Xu, Y., Shu, C.W.: Efficient time discretization for local discontinuous Galerkin methods. Discret. Cont. Dyn. Syst. Ser. B 8(3), 677–693 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Speck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speck, R. Parallelizing spectral deferred corrections across the method. Comput. Visual Sci. 19, 75–83 (2018). https://doi.org/10.1007/s00791-018-0298-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-018-0298-x

Keywords

Navigation