Skip to main content
Log in

Longitudinal study in adolescent anorexia nervosa: evaluation of cortico-striatal and default mode network resting-state brain circuits

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Anorexia nervosa (AN) typically emerges in adolescence. The cortico-striatal system (CSTS) and the default mode network (DMN) are brain circuits with a crucial development during this period. These circuits underlie cognitive functions that are impaired in AN, such as cognitive flexibility and inhibition, among others. Little is known about their involvement in adolescent AN and how weight and symptom improvement might modulate potential alterations in these circuits. Forty-seven adolescent females (30 AN, 17 healthy control) were clinically/neuropsychologically evaluated and scanned during a 3T-MRI resting-state session on two occasions, before and after a 6-month multidisciplinary treatment of the AN patients. Baseline and baseline-to-follow-up between-group differences in CSTS and DMN resting-state connectivity were evaluated, as well as their association with clinical/neuropsychological variables. Increased connectivity between the left dorsal putamen and the left precuneus was found in AN at baseline. At follow-up, body mass index and clinical symptoms had improved in the AN group. An interaction effect was found in the connectivity between the right dorsal caudate to right mid-anterior insular cortex, with lower baseline AN connectivity that improved at follow-up; this improvement was weakly associated with changes in neuropsychological (Stroop test) performance. These results support the presence of CSTS connectivity alterations in adolescents with AN, which improve with weight and symptom improvement. In addition, at the level of caudate-insula connectivity, they might be associated with inhibitory processing performance. Alterations in CSTS pathways might be involved in AN from the early stages of the disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Available under request to the corresponding authors.

Code availability

Not applicable.

References

  1. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Washington, DC, Arlington, VA

    Book  Google Scholar 

  2. Zipfel S, Giel KE, Bulik CM et al (2015) Anorexia nervosa: aetiology, assessment, and treatment. Lancet Psychiatry 2:1099–1111. https://doi.org/10.1016/S2215-0366(15)00356-9

    Article  PubMed  Google Scholar 

  3. Reville M-C, O’Connor L, Frampton I (2016) Literature review of cognitive neuroscience and anorexia nervosa. Curr Psychiatry Rep 18:18. https://doi.org/10.1007/s11920-015-0651-4

    Article  PubMed  Google Scholar 

  4. Holliday J, Tchanturia K, Landau S et al (2005) Is impaired set-shifting an endophenotype of anorexia nervosa? Am J Psychiatry 162:2269–2275. https://doi.org/10.1176/appi.ajp.162.12.2269

    Article  PubMed  Google Scholar 

  5. Gaudio S, Wiemerslage L, Brooks SJ, Schiöth HB (2016) A systematic review of resting-state functional-MRI studies in anorexia nervosa: evidence for functional connectivity impairment in cognitive control and visuospatial and body-signal integration. Neurosci Biobehav Rev 71:578–589. https://doi.org/10.1016/j.neubiorev.2016.09.032

    Article  PubMed  Google Scholar 

  6. Castro-Fornieles J, Bargalló N, Lázaro L et al (2009) A cross-sectional and follow-up voxel-based morphometric MRI study in adolescent anorexia nervosa. J Psychiatr Res 43:331–340. https://doi.org/10.1016/j.jpsychires.2008.03.013

    Article  PubMed  Google Scholar 

  7. Via E, Soriano-Mas C, Sánchez I et al (2015) Abnormal social reward responses in anorexia nervosa: an FMRI study. PLoS One. https://doi.org/10.1371/journal.pone.0133539

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frank GKW, Shott ME, DeGuzman MC (2019) The neurobiology of eating disorders. Child Adolesc Psychiatr Clin N Am 28:629–640

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mcfadden KL, Tregellas JR, Shott ME, Frank GKW (2014) Reduced salience and default mode network activity in women with anorexia nervosa. J Psychiatry Neurosci 39:178–188. https://doi.org/10.1503/jpn.130046

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boehm I, Geisler D, King JA et al (2014) Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa. Front Behav Neurosci 8:346. https://doi.org/10.3389/fnbeh.2014.00346

    Article  PubMed  PubMed Central  Google Scholar 

  11. Via E, Goldberg X, Sánchez I et al (2016) Self and other body perception in anorexia nervosa: the role of posterior DMN nodes. World J Biol Psychiatry. https://doi.org/10.1080/15622975.2016.1249951

    Article  PubMed  Google Scholar 

  12. Lee S, Ran Kim K, Ku J et al (2014) Resting-state synchrony between anterior cingulate cortex and precuneus relates to body shape concern in anorexia nervosa and bulimia nervosa. Psychiatry Res 221:43–48. https://doi.org/10.1016/j.pscychresns.2013.11.004

    Article  PubMed  Google Scholar 

  13. Godefroy O (2003) Frontal syndrome and disorders of executive functions. J Neurol 250:1–6

    Article  PubMed  Google Scholar 

  14. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  CAS  PubMed  Google Scholar 

  15. Blakemore S-J (2012) Imaging brain development: the adolescent brain. Neuroimage 61:397–406. https://doi.org/10.1016/J.NEUROIMAGE.2011.11.080

    Article  PubMed  Google Scholar 

  16. Vatansever D, Manktelow AE, Sahakian BJ et al (2016) Cognitive flexibility: a default network and basal ganglia connectivity perspective. Brain Connect 6:201–207. https://doi.org/10.1089/brain.2015.0388

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harrison BJ, Soriano-Mas C, Pujol J et al (2009) Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry 66:1189–1200. https://doi.org/10.1001/archgenpsychiatry.2009.152

    Article  PubMed  Google Scholar 

  18. Zastrow A, Kaiser S, Stippich C et al (2009) Neural correlates of impaired cognitive-behavioral flexibility in anorexia nervosa. Am J Psychiatry 166:608–616. https://doi.org/10.1176/appi.ajp.2008.08050775

    Article  PubMed  Google Scholar 

  19. Phillipou A, Rossell SL, Castle DJ (2014) The neurobiology of anorexia nervosa: a systematic review. Aust N Z J Psychiatry 48:128–152. https://doi.org/10.1177/0004867413509693

    Article  PubMed  Google Scholar 

  20. Cha J, Ide JS, Bowman FD et al (2016) Abnormal reward circuitry in anorexia nervosa: a longitudinal, multimodal MRI study. Hum Brain Mapp 37:3835–3846. https://doi.org/10.1002/hbm.23279

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pender S, Gilbert SJ, Serpell L (2014) The neuropsychology of starvation: set-shifting and central coherence in a fasted nonclinical sample. PLoS One 9:e110743. https://doi.org/10.1371/journal.pone.0110743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keys A, Brozek J, Henschel A (1950) The biology of human starvation. University Of Minnesota Press

    Book  Google Scholar 

  23. Uniacke B, Wang Y, Biezonski D et al (2019) Resting-state connectivity within and across neural circuits in anorexia nervosa. Brain Behav 9:e01205. https://doi.org/10.1002/brb3.1205

    Article  PubMed  Google Scholar 

  24. Keating C (2010) Theoretical perspective on anorexia nervosa: the conflict of reward. Neurosci Biobehav Rev 34:73–79. https://doi.org/10.1016/j.neubiorev.2009.07.004

    Article  PubMed  Google Scholar 

  25. Liljeholm M, O’Doherty JP (2012) Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn Sci 16:467–475. https://doi.org/10.1016/j.tics.2012.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  26. Davey CG, Fornito A, Pujol J et al (2019) Neurodevelopmental correlates of the emerging adult self. Dev Cogn Neurosci 36:100626. https://doi.org/10.1016/j.dcn.2019.100626

    Article  PubMed  PubMed Central  Google Scholar 

  27. Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682. https://doi.org/10.1073/pnas.98.2.676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coutinho J, Goncalves OF, Soares JM et al (2016) Alterations of the default mode network connectivity in obsessive–compulsive personality disorder: a pilot study. Psychiatry Res Neuroimaging 256:1–7. https://doi.org/10.1016/j.pscychresns.2016.08.007

    Article  PubMed  Google Scholar 

  29. Fan J, Zhong M, Gan J et al (2017) Altered connectivity within and between the default mode, central executive, and salience networks in obsessive-compulsive disorder. J Affect Disord 223:106–114. https://doi.org/10.1016/j.jad.2017.07.041

    Article  PubMed  Google Scholar 

  30. Cowdrey FA, Filippini N, Park RJ et al (2014) Increased resting state functional connectivity in the default mode network in recovered anorexia nervosa. Hum Brain Mapp 35:483–491. https://doi.org/10.1002/hbm.22202

    Article  PubMed  Google Scholar 

  31. Boehm I, Geisler D, Tam F et al (2016) Partially restored resting-state functional connectivity in women recovered from anorexia nervosa. J Psychiatry Neurosci 41:377–385. https://doi.org/10.1503/jpn.150259

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shott ME, Filoteo JV, Bhatnagar KAC et al (2012) Cognitive set-shifting in anorexia nervosa. Eur Eat Disord Rev 20:343–349. https://doi.org/10.1002/erv.2172

    Article  PubMed  PubMed Central  Google Scholar 

  33. Andrés-Perpiña S, Lozano-Serra E, Puig O et al (2011) Clinical and biological correlates of adolescent anorexia nervosa with impaired cognitive profile. Eur Child Adolesc Psychiatry 20:541–549. https://doi.org/10.1007/s00787-011-0216-y

    Article  PubMed  Google Scholar 

  34. Bühren K, Mainz V, Herpertz-Dahlmann B et al (2012) Cognitive flexibility in juvenile anorexia nervosa patients before and after weight recovery. J Neural Transm 119:1047–1057. https://doi.org/10.1007/s00702-012-0821-z

    Article  PubMed  Google Scholar 

  35. Kaufman J, Birmaher B, Brent D et al (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36:980–988. https://doi.org/10.1097/00004583-199707000-00021

    Article  CAS  PubMed  Google Scholar 

  36. Castro-Fornieles J, de la Serna E, Calvo A et al (2019) Functional MRI with a set-shifting task in adolescent anorexia nervosa: a cross-sectional and follow-up study. Neuropsychologia 131:1–8. https://doi.org/10.1016/j.neuropsychologia.2019.05.019

    Article  PubMed  Google Scholar 

  37. Garner DM, Garfinkel PE (1979) The Eating Attitudes Test: an index of the symptoms of anorexia nervosa. Psychol Med 9:273–279

    Article  CAS  PubMed  Google Scholar 

  38. Beck AT, Ward CH, Mendelson M et al (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    Article  CAS  PubMed  Google Scholar 

  39. Wechsler D (2001) Wechsler Adult Intelligence Scale—Third Edition (WAIS-III). TEA Ediciones, S.A.

  40. Wechsler D (2004) The Wechsler intelligence scale for children (WISC)—fourth edition. TEA Ediciones, S.A.

  41. Heaton RK, Chelune G, Talley J et al (1997) Wisconsin Card Sorting Test (WCST). TEA Ediciones, Madrid

    Google Scholar 

  42. Jensen AR, Rohwer WD (1966) The Stroop color-word test: a review. Acta Psychol (Amst) 25:36–93

    Article  CAS  PubMed  Google Scholar 

  43. Parkes L, Fulcher B, Yücel M, Fornito A (2018) An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage 171:415–436. https://doi.org/10.1016/j.neuroimage.2017.12.073

    Article  PubMed  Google Scholar 

  44. Brett M, Anton J, Valabrègue R, Poline JB (2002) Region of interest analysis using an SPM toolbox. In: Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2–6, 2002. Sendai, Japan

  45. Pruim RHR, Mennes M, van Rooij D et al (2015) ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 112:267–277. https://doi.org/10.1016/j.neuroimage.2015.02.064

    Article  PubMed  Google Scholar 

  46. Goelman G, Gordon N, Bonne O (2014) Maximizing negative correlations in resting-state functional connectivity MRI by time-lag. PLoS One. https://doi.org/10.1371/journal.pone.0111554

    Article  PubMed  PubMed Central  Google Scholar 

  47. Walsh BT (2013) The enigmatic persistence of anorexia nervosa. Am Psychiatr Assoc 170:477–484

    Article  Google Scholar 

  48. Lao-Kaim NP, Fonville L, Giampietro VP et al (2015) Aberrant function of learning and cognitive control networks underlie inefficient cognitive flexibility in anorexia nervosa: a cross-sectional fMRI study. PLoS One 10:e0124027. https://doi.org/10.1371/journal.pone.0124027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Decker JH, Figner B, Steinglass JE (2014) On weight and waiting: delay discounting in anorexia nervosa pretreatment and posttreatment. Biol Psychiatry 78:606–614. https://doi.org/10.1016/j.biopsych.2014.12.016

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583. https://doi.org/10.1093/brain/awl004

    Article  PubMed  Google Scholar 

  51. Porter JN, Roy AK, Benson B et al (2015) Age-related changes in the intrinsic functional connectivity of the human ventral vs. dorsal striatum from childhood to middle age. Dev Cogn Neurosci 11:83–95. https://doi.org/10.1016/j.dcn.2014.08.011

    Article  PubMed  Google Scholar 

  52. Nakamura Y, Ikuta T (2017) Caudate-precuneus functional connectivity is associated with obesity preventive eating tendency. Brain Connect 7:211–217. https://doi.org/10.1089/brain.2016.0424

    Article  PubMed  Google Scholar 

  53. Nunn K, Frampton I, Fuglset TS et al (2011) Anorexia nervosa and the insula. Med Hypotheses 76:353–357. https://doi.org/10.1016/j.mehy.2010.10.038

    Article  PubMed  Google Scholar 

  54. Jiang J, Beck J, Heller K, Egner T (2015) An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nat Commun 6:8165. https://doi.org/10.1038/ncomms9165

    Article  CAS  PubMed  Google Scholar 

  55. Ghaziri J, Tucholka A, Girard G et al (2018) Subcortical structural connectivity of insular subregions. Sci Rep. https://doi.org/10.1038/s41598-018-26995-0

    Article  PubMed  PubMed Central  Google Scholar 

  56. Leung H-C (2000) An event-related functional MRI study of the stroop color word interference task. Cereb Cortex 10:552–560. https://doi.org/10.1093/cercor/10.6.552

    Article  CAS  PubMed  Google Scholar 

  57. Bernstein GA, Cullen KR, Harris EC et al (2019) Sertraline effects on striatal resting-state functional connectivity in youth with obsessive-compulsive disorder: a pilot study. J Am Acad Child Adolesc Psychiatry 58:486–495. https://doi.org/10.1016/j.jaac.2018.07.897

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Alicia Koplowitz Foundation (FAK) (DN040546) and the Generalitat de Catalunya (Child Psychiatry and Psychology Group, 2017SGR4881 and CERCA programme). E.V. was partly supported by a Río Hortega fellowship, provided by the Carlos III Health Institute (ISCIII), Spain (CM15/000839).

Funding

This study was supported by grants from the Alicia Koplowitz Foundation (FAK) (DN040546) and the Generalitat de Catalunya (Child Psychiatry and Psychology Group, 2017SGR4881 and CERCA programme). E.V. was partly supported by a Río Hortega fellowship, provided by the Carlos III Health Institute (ISCIII), Spain (CM15/000839).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Via.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The ethics committee of clinical research of the Hospital Clínic approved the study protocol. The investigation was carried out in accordance with the latest version of the Declaration of Helsinki (Seoul, Republic of Korea, October 2008).

Consent to participate

All subjects gave written informed consent after a detailed description of the study.

Consent for publication

All authors give their consent for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

787_2021_1880_MOESM1_ESM.ppt

Supplementary file1 Supplementary Fig. 1. Connectivity maps between each seed region and the rest of the brain in the healthy control group. Maps corresponding to baseline MRI images, positive connectivity maps. The threshold was set at p<.005, uncorrected, for display purposes. Coloured bar represents T values. Age was not added as a covariate in this model. These results replicate the previous pattern of rsFC in the striatum: Ventral caudate showed increased rsFC with the anterior prefrontal and perigenual anterior cingulate cortex. Dorsal caudate showed increased rsFC with the medial frontal cortex and dorsal parts of the anterior cingulate cortex, extending to the dorsal prefrontal cortex (frontal-eye field area). Ventral putamen showed increased rsFC with the insular cortex, the dorsal anterior cingulate cortex and the inferior frontal gyrus. Dorsal putamen showed increased rsFC with the insular cortex-opercula, extending to the dorsolateral prefrontal cortex, the inferior frontal cortex and the thalamus (PPT 899 kb)

787_2021_1880_MOESM2_ESM.ppt

Supplementary file2 Supplementary Figure 2. ICA-based maps of the DMN. Image representing the two resting-state networks obtained from the ICA analysis that were identified as part of the DMN, with more anterior parts emerging in the resting-state network A and more posterior ones in the resting-state network B (PPT 547 kb)

Supplementary file3 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Via, E., Calvo, A., de la Serna, E. et al. Longitudinal study in adolescent anorexia nervosa: evaluation of cortico-striatal and default mode network resting-state brain circuits. Eur Child Adolesc Psychiatry 32, 513–526 (2023). https://doi.org/10.1007/s00787-021-01880-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-021-01880-w

Keywords

Navigation