Skip to main content

Advertisement

Log in

Sex-linked neurofunctional basis of psychological resilience in late adolescence: a resting-state functional magnetic resonance imaging study

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Psychological resilience refers to the ability to adapt effectively in the face of adversity, which is closely related to an individual’s psychological and physical health and well-being. Although previous behavioural studies have shown sex differences in psychological resilience, little is known about the neural basis of sex differences in psychological resilience. Here, we measured amplitude of low-frequency fluctuations (ALFF) via resting-state functional magnetic resonance imaging to investigate the sex-linked neurofunctional basis of psychological resilience in 231 healthy adolescents. At the behavioural level, we replicated previous findings indicating that males are more resilient than females. At the neural level, we found sex differences in the relationship between psychological resilience and ALFF in the right orbitofrontal cortex (OFC). Specifically, males showed a positive correlation between psychological resilience and ALFF in the right OFC, while females showed a negative correlation in this region. The sex-specific association between psychological resilience and spontaneous brain activity might be dependent on differences in hormonal systems and brain development between male and female adolescents. Taken together, the results of our study might provide the first evidence of sex-specific neurofunctional substrates of psychological resilience in adolescents, emphasizing the vital role of sex effects in future psychological resilience-related studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Garmezy N, Nuechterlein K (1972) Invulnerable children—fact and fiction of competence and disadvantage. Am J Orthopsychiat 42(2):328

    Google Scholar 

  2. Luthar SS, Cicchetti D, Becker B (2000) The construct of resilience: a critical evaluation and guidelines for future work. Child Dev 71(3):543–562. https://doi.org/10.1111/1467-8624.00164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonanno GA (2004) Loss, trauma, and human resilience—have we underestimated the human capacity to thrive after extremely aversive events? Am Psychol 59(1):20–28. https://doi.org/10.1037/0003-066X.59.1.20

    Article  PubMed  Google Scholar 

  4. Olsson CA, Bond L, Burns JM, Vella-Brodrick DA, Sawyer SM (2003) Adolescent resilience: a concept analysis. J Adolescence 26(1):1–11. https://doi.org/10.1016/S0140-1971(02)00118-5

    Article  Google Scholar 

  5. Johnston MC, Porteous T, Crilly MA, Burton CD, Elliott A, Iversen L, McArdle K, Murray A, Phillips LH, Black C (2015) Physical disease and resilient outcomes: a systematic review of resilience definitions and study methods. Psychosomatics 56(2):168–180. https://doi.org/10.1016/j.psym.2014.10.005

    Article  PubMed  Google Scholar 

  6. Rutten BP, Hammels C, Geschwind N, Menne-Lothmann C, Pishva E, Schruers K, van den Hove D, Kenis G, van Os J, Wichers M (2013) Resilience in mental health: linking psychological and neurobiological perspectives. Acta Psychiatr Scand 128(1):3–20. https://doi.org/10.1111/acps.12095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tugade MM, Fredrickson BL, Barrett LF (2004) Psychological resilience and positive emotional granularity: examining the benefits of positive emotions on coping and health. J Pers 72(6):1161–1190. https://doi.org/10.1111/j.1467-6494.2004.00294.x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Agaibi CE, Wilson JP (2005) Trauma, PTSD, and resilience: a review of the literature. Trauma Violence Abus 6(3):195–216. https://doi.org/10.1177/1524838005277438

    Article  Google Scholar 

  9. Southwick SM, Vythilingam M, Charney DS (2005) The psychobiology of depression and resilience to stress: implications for prevention and treatment. Ann Rev Clin Psychol 1:255–291. https://doi.org/10.1146/annurev.clinpsy.1.102803.143948

    Article  Google Scholar 

  10. Poole JC, Dobson KS, Pusch D (2017) Childhood adversity and adult depression: the protective role of psychological resilience. Child Abuse Neglect 64:89–100. https://doi.org/10.1016/j.chiabu.2016.12.012

    Article  PubMed  Google Scholar 

  11. Southwick SM, Charney DS (2012) The science of resilience: implications for the prevention and treatment of depression. Science 338(6103):79–82. https://doi.org/10.1126/science.1222942

    Article  CAS  PubMed  Google Scholar 

  12. Yi JP, Vitaliano PP, Smith RE, Yi JC, Weinger K (2008) The role of resilience on psychological adjustment and physical health in patients with diabetes. Br J Health Psychol 13:311–325. https://doi.org/10.1348/135910707X186994

    Article  PubMed  Google Scholar 

  13. Chan IWS, Lai JCL, Wong KWN (2006) Resilience is associated with better recovery in Chinese people diagnosed with coronary heart disease. Psychol Health 21(3):335–349. https://doi.org/10.1080/14768320500215137

    Article  Google Scholar 

  14. Wright LJ, Zautra A, Going S (2008) Adaptation to early knee osteoarthritis: the role of risk, resilience, and disease severity on pain and physical functioning. Ann Behav Med 36(1):70–80. https://doi.org/10.1007/s12160-008-9048-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Avey JB, Reichard RJ, Luthans F, Mhatre KH (2011) Meta-analysis of the impact of positive psychological capital on employee attitudes, behaviors, and performance. Hum Resour Dev Q 22(2):127–152. https://doi.org/10.1002/hrdq.20070

    Article  Google Scholar 

  16. Luthans F, Avolio BJ, Avey JB, Norman SM (2007) Positive psychological capital: measurement and relationship with performance and satisfaction. Pers Psychol 60(3):541–572. https://doi.org/10.1111/j.1744-6570.2007.00083.x

    Article  Google Scholar 

  17. Luthans F, Youssef-Morgan CM (2017) Psychological capital: an evidence-based positive approach. Annu Rev Org Psychol 4:339–366. https://doi.org/10.1146/annurev-orgpsych-032516-113324

    Article  Google Scholar 

  18. Rodriguez-Llanes JM, Vos F, Guha-Sapir D (2013) Measuring psychological resilience to disasters: are evidence-based indicators an achievable goal? Environ Health 12:115. https://doi.org/10.1186/1476-069x-12-115

    Article  PubMed  PubMed Central  Google Scholar 

  19. Skrove M, Romundstad P, Indredavik MS (2013) Resilience, lifestyle and symptoms of anxiety and depression in adolescence: the Young-HUNT study. Soc Psychol Psychol Epidence 48(3):407–416. https://doi.org/10.1007/s00127-012-0561-2

    Article  Google Scholar 

  20. Stratta P, Capanna C, Patriarca S, de Cataldo S, Bonanni RL, Riccardi L, Rossi A (2013) Resilience in adolescence: gender differences two years after the earthquake of L'Aquila. Pers Indiv Differ 54(3):327–331. https://doi.org/10.1016/j.paid.2012.09.016

    Article  Google Scholar 

  21. Bonanno GA, Galea S, Bucciarelli A, Vlahov D (2007) What predicts psychological resilience after disaster? The role of demographics, resources, and life stress. J Consult Clin Psychol 75(5):671–682. https://doi.org/10.1037/0022-006X.75.5.671

    Article  PubMed  Google Scholar 

  22. Hobfoll SE, Palmieri PA, Johnson RJ, Canetti-Nisim D, Hall BJ, Galea S (2009) Trajectories of resilience, resistance, and distress during ongoing terrorism: the case of Jews and Arabs in Israel. J Consult Clin Psychol 77(1):138–148. https://doi.org/10.1037/a0014360

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bonanno GA, Ho SAY, Chan JCK, Kwong RSY, Cheung CKY, Wong CPY, Wong VCW (2008) Psychological resilience and dysfunction among hospitalized survivors of the SARS epidemic in Hong kong: a latent class approach. Health Psychol 27(5):659–667. https://doi.org/10.1037/0278-6133.27.5.659

    Article  PubMed  Google Scholar 

  24. Portzky M, Wagnild G, De Bacquer D, Audenaert K (2010) Psychometric evaluation of the Dutch Resilience Scale RS-nl on 3265 healthy participants: a confirmation of the association between age and resilience found with the Swedish version. Scand J Caring Sci 24:86–92. https://doi.org/10.1111/j.1471-6712.2010.00841.x

    Article  PubMed  Google Scholar 

  25. Shin GS, Choi KS, Jeong KS, Min YS, Ahn YS, Kim MG (2018) Psychometric properties of the 10-item Conner–Davidson resilience scale on toxic chemical-exposed workers in South Korea. Ann Occup Environ Med 30:52. https://doi.org/10.1186/s40557-018-0265-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morice-Ramat A, Goronflot L, Guihard G (2018) Are alexithymia and empathy predicting factors of the resilience of medical residents in France? Int J Med Educ 9:122–128. https://doi.org/10.5116/ijme.5ac6.44ba

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kimhi S, Shamai M (2006) Are women at higher risk than men? Gender differences among teenagers and adults in their response to threat of war and terror. Women Health 43(3):1–19. https://doi.org/10.1300/J013v43n03_01

    Article  PubMed  Google Scholar 

  28. Bale TL, Epperson CN (2015) Sex differences and stress across the lifespan. Nat Neurosci 18(10):1413–1420. https://doi.org/10.1038/nn.4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirani S, Lasiuk G, Hegadoren K (2016) The intersection of gender and resilience. J Psychiatr Ment Health Nurs 23(6–7):455–467. https://doi.org/10.1111/jpm.12313

    Article  CAS  PubMed  Google Scholar 

  30. Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E, Birbaumer N, Sulzer J (2017) Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 18(2):86–100. https://doi.org/10.1038/nrn.2016.164

    Article  CAS  PubMed  Google Scholar 

  31. Fischer AS, Camacho C, Ho TC, Whitfield-Gabrieli S, Gotlib IH (2018) Neural markers of resilience in adolescent females at familial risk for major depressive disorder. JAMA Psychiatry 75(5):493–502. https://doi.org/10.1001/jamapsychiatry.2017.4516

    Article  PubMed  Google Scholar 

  32. Iadipaolo AS, Marusak HA, Paulisin SM, Sala-Hamrick K, Crespo LM, Elrahal F, Peters C, Brown S, Rabinak CA (2018) Distinct neural correlates of trait resilience within core neurocognitive networks in at-risk children and adolescents. NeuroImage Clin 20:24–34. https://doi.org/10.1016/j.nicl.2018.06.026

    Article  PubMed  PubMed Central  Google Scholar 

  33. Woodward SH, Kaloupek DG, Streeter CC, Martinez C, Schaer M, Eliez S (2006) Decreased anterior cingulate volume in combat-related PTSD. Biol Psychiatry 59(7):582–587. https://doi.org/10.1016/j.biopsych.2005.07.033

    Article  PubMed  Google Scholar 

  34. Frodl TS, Koutsouleris N, Bottlender R, Born C, Jager M, Scupin I, Reiser M, Moller HJ, Meisenzahl EM (2008) Depression-related variation in brain morphology over 3 years—effects of stress? Arch Gen Psychiatry 65(10):1156–1165. https://doi.org/10.1001/archpsyc.65.10.1156

    Article  PubMed  Google Scholar 

  35. Kasai K, Yamasue H, Gilbertson MW, Shenton ME, Rauch SL, Pitman RK (2008) Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biol Psychiatry 63(6):550–556. https://doi.org/10.1016/j.biopsych.2007.06.022

    Article  PubMed  Google Scholar 

  36. Reynaud E, Guedj E, Souville M, Trousselard M, Zendjidjian X, El Khoury-Malhame M, Fakra E, Nazarian B, Blin O, Canini F, Khalfa S (2013) Relationship between emotional experience and resilience: An fMRI study in fire-fighters. Neuropsychologia 51(5):845–849. https://doi.org/10.1016/j.neuropsychologia.2013.01.007

    Article  PubMed  Google Scholar 

  37. Brunetti M, Marzetti L, Sepede G, Zappasodi F, Pizzella V, Sarchione F, Vellante F, Martinotti G, Di Giannantonio M (2017) Resilience and cross-network connectivity: a neural model for post-trauma survival. Prog Neuropsychopharmacol Biol Psychiatry 77:110–119. https://doi.org/10.1016/j.pnpbp.2017.04.010

    Article  PubMed  Google Scholar 

  38. Steffens DC, Wang LH, Manning KJ, Pearlson GD (2017) Negative affectivity, aging, and depression: results from the Neurobiology of Late-Life Depression (NBOLD) Study. Am J Geriat Psychiatry 25(10):1135–1149. https://doi.org/10.1016/j.jagp.2017.03.017

    Article  Google Scholar 

  39. Workman CI, Lythe KE, Mckie S, Moll J, Gethin JA, Deakin JFW, Elliott R, Zahn R (2017) A novel resting-state functional magnetic resonance imaging signature of resilience to recurrent depression. Psychol Med 47(4):597–607. https://doi.org/10.1017/S0033291716002567

    Article  CAS  PubMed  Google Scholar 

  40. Hemington KS, Rogachov A, Cheng JC, Bosma RL, Kim JA, Osborne NR, Inman RD, Davis KD (2018) Patients with chronic pain exhibit a complex relationship triad between pain, resilience, and within- and cross-network functional connectivity of the default mode network. Pain 159(8):1621–1630. https://doi.org/10.1097/j.pain.0000000000001252

    Article  PubMed  Google Scholar 

  41. Leaver AM, Yang H, Siddarth P, Vlasova RM, Krause B, St Cyr N, Narr KL, Lavretsky H (2018) Resilience and amygdala function in older healthy and depressed adults. J Affect Disord 237:27–34. https://doi.org/10.1016/j.jad.2018.04.109

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shao R, Lau WKW, Leung MK, Lee TMC (2018) Subgenual anterior cingulate-insula resting-state connectivity as a neural correlate to trait and state stress resilience. Brain Cognit 124:73–81. https://doi.org/10.1016/j.bandc.2018.05.001

    Article  Google Scholar 

  43. Shi L, Sun J, Wei D, Qiu J (2019) Recover from the adversity: functional connectivity basis of psychological resilience. Neuropsychologia 122:20–27. https://doi.org/10.1016/j.neuropsychologia.2018.12.002

    Article  PubMed  Google Scholar 

  44. van der Werff SJA, Pannekoek JN, Stein DJ, van der Wee NJA (2013) Neuroimaging of resilience to stress: current state of affairs. Hum Psychopharmcol 28(5):529–532. https://doi.org/10.1002/hup.2336

    Article  Google Scholar 

  45. van der Werff SJA, van den Berg SM, Pannekoek JN, Elzinga BM, van der Wee NJA (2013) Neuroimaging resilience to stress: a review. Front Behav Neurosci 7:39. https://doi.org/10.3389/Fnbeh.2013.00039

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nostro AD, Muller VI, Reid AT, Eickhoff SB (2017) Correlations between personality and brain structure: a crucial role of gender. Cereb Cortex 27(7):3698–3712. https://doi.org/10.1093/cercor/bhw191

    Article  PubMed  Google Scholar 

  47. Kilpatrick LA, Istrin JJ, Gupta A, Naliboff BD, Tillisch K, Labus JS, Mayer EA (2015) Sex commonalities and differences in the relationship between resilient personality and the intrinsic connectivity of the salience and default mode networks. Biol Psychol 112:107–115. https://doi.org/10.1016/j.biopsycho.2015.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mar RA, Spreng RN, DeYoung CG (2013) How to produce personality neuroscience research with high statistical power and low additional cost. Cogn Affect Behav Neurosci 13(3):674–685. https://doi.org/10.3758/s13415-013-0202-6

    Article  PubMed  Google Scholar 

  49. Campbell-Sills L, Stein MB (2007) Psychometric analysis and refinement of the Connor-Davidson Resilience Scale (CD-RISC): validation of a 10-item measure of resilience. J Trauma Stress 20(6):1019–1028. https://doi.org/10.1002/jts.20271

    Article  PubMed  Google Scholar 

  50. Connor KM, Davidson JRT (2003) Development of a new resilience scale: the Connor–Davidson Resilience scale (CD-RISC). Depress Anxiety 18(2):76–82. https://doi.org/10.1002/da.10113

    Article  PubMed  Google Scholar 

  51. Kong F, Ma X, You X, Xiang Y (2018) The resilient brain: psychological resilience mediates the effect of amplitude of low-frequency fluctuations in orbitofrontal cortex on subjective well-being in young healthy adults. Soc Cogn Affect Neurosci 13(7):755–763. https://doi.org/10.1093/scan/nsy045

    Article  PubMed  PubMed Central  Google Scholar 

  52. Margulies DS, Bottger J, Long XY, Lv YT, Kelly C, Schafer A, Goldhahn D, Abbushi A, Milham MP, Lohmann G, Villringer A (2010) Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. Magn Reson Mater Phys Biol Med 23(5–6):289–307. https://doi.org/10.1007/s10334-010-0228-5

    Article  Google Scholar 

  53. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1993) Functional connectivity—the principal-component analysis of large (PET) data sets. J Cerebr Blood Flow Metab 13(1):5–14. https://doi.org/10.1038/Jcbfm.1993.4

    Article  CAS  Google Scholar 

  54. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711. https://doi.org/10.1038/nrn2201

    Article  CAS  Google Scholar 

  55. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157. https://doi.org/10.1038/35084005

    Article  CAS  PubMed  Google Scholar 

  56. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, Tian LX, Jiang TZ, Wang YF (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91. https://doi.org/10.1016/j.braindev.2006.07.002

    Article  PubMed  Google Scholar 

  57. Zhao JZ, Tomasi D, Wiers CE, Shokri-Kojori E, Demiral SB, Zhang Y, Volkow ND, Wang GJ (2017) Correlation between traits of emotion-based impulsivity and intrinsic default-mode network activity. Neural Plast. https://doi.org/10.1155/2017/9297621

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP (2010) The oscillating brain: Complex and reliable. Neuroimage 49(2):1432–1445. https://doi.org/10.1016/j.neuroimage.2009.09.037

    Article  PubMed  Google Scholar 

  59. Zuo XN, Xu T, Milham MP (2019) Harnessing reliability for neuroscience research. Nat Hum Behav 3(8):768–771. https://doi.org/10.1038/s41562-019-0655-x

    Article  PubMed  Google Scholar 

  60. Lui S, Yao L, Xiao Y, Keedy SK, Reilly JL, Keefe RS, Tamminga CA, Keshavan MS, Pearlson GD, Gong Q, Sweeney JA (2015) Resting-state brain function in schizophrenia and psychotic bipolar probands and their first-degree relatives. Psychol Med 45(1):97–108. https://doi.org/10.1017/S003329171400110x

    Article  CAS  PubMed  Google Scholar 

  61. Li F, Lui S, Yao L, Hu J, Lv P, Huang X, Mechelli A, Sweeney JA, Gong Q (2016) Longitudinal changes in resting-state cerebral activity in patients with first-episode schizophrenia: a 1-year follow-up functional MR imaging study. Radiology 279(3):867–875. https://doi.org/10.1148/radiol.2015151334

    Article  PubMed  Google Scholar 

  62. Gentili C, Cristea IA, Ricciardi E, Vanello N, Popita C, David D, Pietrini P (2017) Not in one metric: neuroticism modulates different resting state metrics within distinctive brain regions. Behav Brain Res 327:34–43. https://doi.org/10.1016/j.bbr.2017.03.031

    Article  PubMed  Google Scholar 

  63. Mackey AP, Finn AS, Leonard JA, Jacoby-Senghor DS, West MR, Gabrieli CF, Gabrieli JD (2015) Neuroanatomical correlates of the income-achievement gap. Psychol Sci 26(6):925–933. https://doi.org/10.1177/0956797615572233

    Article  PubMed  PubMed Central  Google Scholar 

  64. Foulkes L, Blakemore SJ (2018) Studying individual differences in human adolescent brain development. Nat Neurosci 21(3):315–323. https://doi.org/10.1038/S4l593-018-0078-4

    Article  CAS  PubMed  Google Scholar 

  65. Konrad K, Firk C, Uhlhaas PJ (2013) Brain development during adolescence neuroscientific insights into this developmental period. Dtsch Arztebl Int 110(25):425–431. https://doi.org/10.3238/arztebl.2013.0425

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kaczkurkin AN, Raznahan A, Satterthwaite TD (2019) Sex differences in the developing brain: insights from multimodal neuroimaging. Neuropsychopharmacology 44(1):71–85. https://doi.org/10.1038/s41386-018-0111-z

    Article  PubMed  Google Scholar 

  67. Wang S, Xu X, Zhou M, Chen TL, Yang X, Chen GX, Gong QY (2017) Hope and the brain: trait hope mediates the protective role of medial orbitofrontal cortex spontaneous activity against anxiety. Neuroimage 157:439–447. https://doi.org/10.1016/j.neuroimage.2017.05.056

    Article  PubMed  Google Scholar 

  68. Wang S, Zhou M, Chen TL, Yang X, Chen GX, Wang MY, Gong QY (2017) Grit and the brain: spontaneous activity of the dorsomedial prefrontal cortex mediates the relationship between the trait grit and academic performance. Soc Cogn Affect Neurosci 12(3):452–460. https://doi.org/10.1093/scan/nsw145

    Article  PubMed  Google Scholar 

  69. Wang S, Zhao YJ, Cheng BC, Wang XL, Yang X, Chen TL, Suo XL, Gong QY (2018) The optimistic brain: trait optimism mediates the influence of resting-state brain activity and connectivity on anxiety in late adolescence. Hum Brain Mapp 39(10):3943–3955. https://doi.org/10.1002/hbm.24222

    Article  PubMed  PubMed Central  Google Scholar 

  70. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    Article  CAS  PubMed  Google Scholar 

  71. Wang L, Shi ZB, Zhang YQ, Zhang Z (2010) Psychometric properties of the 10-item Connor–Davidson Resilience Scale in Chinese earthquake victims. Psychiatry Clin Neurosci 64(5):499–504. https://doi.org/10.1111/j.1440-1819.2010.02130.x

    Article  PubMed  Google Scholar 

  72. Ye ZJ, Qiu HZ, Li PF, Chen P, Liang MZ, Liu ML, Yu YL, Wang SN, Quan XM (2017) Validation and application of the Chinese version of the 10-item Connor–Davidson Resilience Scale (CD-RISC-10) among parents of children with cancer diagnosis. Eur J Oncol Nurs 27:36–44. https://doi.org/10.1016/j.ejon.2017.01.004

    Article  PubMed  Google Scholar 

  73. Dong XL, Li GP, Liu CL, Kong LH, Fang YY, Kang XF, Li P (2017) The mediating role of resilience in the relationship between social support and posttraumatic growth among colorectal cancer survivors with permanent intestinal ostomies: a structural equation model analysis. Eur J Oncol Nurs 29:47–52. https://doi.org/10.1016/j.ejon.2017.04.007

    Article  PubMed  Google Scholar 

  74. Zou GY, Shen XY, Tian XH, Liu CQ, Li GP, Kong LH, Li P (2016) Correlates of psychological distress, burnout, and resilience among Chinese female nurses. Ind Health 54(5):389–395. https://doi.org/10.2486/indhealth.2015-0103

    Article  PubMed  PubMed Central  Google Scholar 

  75. Liu XH, Liu CQ, Tian XH, Zou GY, Li GP, Kong LH, Li P (2016) Associations of perceived stress, resilience and social support with sleep disturbance among community-dwelling adults. Stress Health 32(5):578–586. https://doi.org/10.1002/smi.2664

    Article  PubMed  Google Scholar 

  76. Chen XY, Mao YX, Kong LH, Li GP, Xin ML, Lou FL, Li P (2016) Resilience moderates the association between stigma and psychological distress among family caregivers of patients with schizophrenia. Pers Indiv Differ 96:78–82. https://doi.org/10.1016/j.paid.2016.02.062

    Article  Google Scholar 

  77. Yan CG, Zang YF (2010) DPARSF: a MATLAB toolbox for "Pipeline" data analysis of resting-state fMRI. Frontiers in systems neuroscience 4:13. https://doi.org/10.3389/fnsys.2010.00013

    Article  Google Scholar 

  78. Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59(1):431–438. https://doi.org/10.1016/j.neuroimage.2011.07.044

    Article  PubMed  Google Scholar 

  79. Liu XN, Wang SQ, Zhang XQ, Wang ZQ, Tian XJ, He Y (2014) Abnormal amplitude of low-frequency fluctuations of intrinsic brain activity in Alzheimer's disease. J Alzheimers Dis 40(2):387–397. https://doi.org/10.3233/Jad-131322

    Article  PubMed  Google Scholar 

  80. Lv H, Wang Z, Tong E, Williams LM, Zaharchuk G, Zeineh M, Goldstein-Piekarski AN, Ball TM, Liao C, Wintermark M (2018) Resting-state functional MRI: everything that nonexperts have always wanted to know. Am J Neuroradiol 39(8):1390–1399. https://doi.org/10.3174/ajnr.A5527

    Article  CAS  PubMed  Google Scholar 

  81. Xue SW, Li D, Weng XC, Northoff G, Li DW (2014) Different neural manifestations of two slow frequency bands in resting functional magnetic resonance imaging: a systemic survey at regional, interregional, and network levels. Brain Connect 4(4):242–255. https://doi.org/10.1089/brain.2013.0182

    Article  PubMed  Google Scholar 

  82. Yu RJ, Hsieh MH, Wang HLS, Liu CM, Liu CC, Hwang TJ, Chien YL, Hwu HG, Tseng WYI (2013) Frequency dependent alterations in regional homogeneity of baseline brain activity in schizophrenia. PLoS One. https://doi.org/10.1371/journal.pone.0057516

  83. Yamasue H, Abe O, Suga M, Yamada H, Rogers MA, Aoki S, Kato N, Kasai K (2008) Sex-linked neuroanatomical basis of human altruistic cooperativeness. Cereb Cortex 18(10):2331–2340. https://doi.org/10.1093/cercor/bhm254

    Article  PubMed  Google Scholar 

  84. Kong F, Zhen ZL, Li JG, Huang LJ, Wang X, Song YY, Liu J (2014) Sex-related neuroanatomical basis of emotion regulation ability. PLoS One. https://doi.org/10.1371/journal.pone.0097071

  85. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One. https://doi.org/10.1371/journal.pone.0025031

  86. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4(1):58–73. https://doi.org/10.1002/(SICI)1097-0193(1996)4:1%3c58:AID-HBM4%3e3.0.CO;2-O

  87. Worsley KJ, Evans AC, Marrett S, Neelin P (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12(6):900–918. https://doi.org/10.1038/jcbfm.1992.127

    Article  CAS  PubMed  Google Scholar 

  88. Cox CL, Uddin LQ, Di Martino A, Castellanos FX, Milham MP, Kelly C (2012) The balance between feeling and knowing: affective and cognitive empathy are reflected in the brain's intrinsic functional dynamics. Soc Cogn Affect Neursci 7(6):727–737. https://doi.org/10.1093/scan/nsr051

    Article  Google Scholar 

  89. Guo WB, Liu F, Yu MY, Zhang J, Zhang ZK, Liu JR, Xiao CQ, Zhao JP (2014) Functional and anatomical brain deficits in drug-naive major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 54:1–6. https://doi.org/10.1016/j.pnpbp.2014.05.008

    Article  PubMed  Google Scholar 

  90. Liu W, Liu HJ, Wei DT, Sun JZ, Yang JY, Meng J, Wang LH, Qiu J (2015) Abnormal degree centrality of functional hubs associated with negative coping in older Chinese adults who lost their only child. Biol Psychol 112:46–55. https://doi.org/10.1016/j.biopsycho.2015.09.005

    Article  PubMed  Google Scholar 

  91. Kenny DA (1987) Statistics for the social and behavioral sciences. Little, Brown, Boston

    Google Scholar 

  92. Cohen J (1988) Statistical power analysis for the behavioral sciences. 2. New Jersey: Lawrence Erlbaum Associates, Inc

  93. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  Google Scholar 

  94. Glaser D (1999) Multivariate statistical methods: a first course. Struct Equ Model 6(1):127–133. https://doi.org/10.1080/10705519909540123

    Article  Google Scholar 

  95. Antunez JM, Navarro JF, Adan A (2015) Circadian typology is related to resilience and optimism in healthy adults. Chronobiol Int 32(4):524–530. https://doi.org/10.3109/07420528.2015.1008700

    Article  PubMed  Google Scholar 

  96. Campbell-Sills L, Forde DR, Stein MB (2009) Demographic and childhood environmental predictors of resilience in a community sample. J Psychiatry Res 43(12):1007–1012. https://doi.org/10.1016/j.jpsychires.2009.01.013

    Article  Google Scholar 

  97. Smith KJ, Emerson DJ, Schuldt MA (2018) A demographic and psychometric assessment of the Connor-Davidson resilience scale 10 (CD-RISC 10) with a US public accounting sample. J Account Org Chan 14(4):513–534. https://doi.org/10.1108/Jaoc-12-2016-0085

    Article  Google Scholar 

  98. Kong XZ, Zhen Z, Li X, Lu HH, Wang R, Liu L, He Y, Zang Y, Liu J (2014) Individual differences in impulsivity predict head motion during magnetic resonance imaging. PLoS ONE 9(8):e104989. https://doi.org/10.1371/journal.pone.0104989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xing XX, Zuo XN (2018) The anatomy of reliability: a must read for future human brain mapping. Sci Bull 63(24):1606–1607. https://doi.org/10.1016/j.scib.2018.12.010

    Article  Google Scholar 

  100. Zuo XN, Biswal BB, Poldrack RA (2019) Editorial: reliability and reproducibility in functional connectomics. Front Neurosci 13:117. https://doi.org/10.3389/fnins.2019.00117

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bibi A, Kalim S, Khalid MA (2018) Post-traumatic stress disorder and resilience among adult burn patients in Pakistan: a cross-sectional study. Burns Trauma 6:8. https://doi.org/10.1186/S41038-018-0110

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tusaie K, Puskar K, Sereika SM (2007) A predictive and moderating model of psychosocial resilience in adolescents. J Nurs Scholarship 39(1):54–60. https://doi.org/10.1111/j.1547-5069.2007.00143.x

    Article  Google Scholar 

  103. Eshel Y, Majdoob H (2014) Posttraumatic recovery to distress symptoms ratio: a mediator of the links between gender, exposure to fire, economic condition, and three indices of resilience to fire disaster. Commun Ment Health J 50(8):997–1003. https://doi.org/10.1007/s10597-014-9734-7

    Article  Google Scholar 

  104. Hodes M, Jagdev D, Chandra N, Cunniff A (2008) Risk and resilience for psychological distress amongst unaccompanied asylum seeking adolescents. J Child Psychol Psychiatry 49(7):723–732. https://doi.org/10.1111/j.1469-7610.2008.01912.x

    Article  PubMed  Google Scholar 

  105. Renk K, Creasey G (2003) The relationship of gender, gender identity, and coping strategies in late adolescents. J Adolesc 26(2):159–168. https://doi.org/10.1016/S0140-1971(02)00135-5

    Article  PubMed  Google Scholar 

  106. Matud MP (2004) Gender differences in stress and coping styles. Pers Indiv Differ 37(7):1401–1415. https://doi.org/10.1016/j.paid.2004.01.010

    Article  Google Scholar 

  107. Heiman T (2004) Examination of the salutogenic model, support resources, coping style, and stressors among Israeli university students. J Psychol 138(6):505–520. https://doi.org/10.3200/Jrlp.138.6.505-520

    Article  PubMed  Google Scholar 

  108. Smith DG, Jones PS, Bullmore ET, Robbins TW, Ersche KD (2014) Enhanced orbitofrontal cortex function and lack of attentional bias to cocaine cues in recreational stimulant users. Biol Psychiatry 75(2):124–131. https://doi.org/10.1016/j.biopsych.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  109. Waugh CE, Wager TD, Fredrickson BL, Noll DC, Taylor SF (2008) The neural correlates of trait resilience when anticipating and recovering from threat. Soc Cogn Affect Neursci 3(4):322–332. https://doi.org/10.1093/scan/nsn024

    Article  Google Scholar 

  110. Kong F, Hu SY, Wang X, Song YY, Liu J (2015) Neural correlates of the happy life: the amplitude of spontaneous low frequency fluctuations predicts subjective well-being. Neuroimage 107:136–145. https://doi.org/10.1016/j.neuroimage.2014.11.033

    Article  PubMed  Google Scholar 

  111. Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN (2008) Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59(6):1037–1050. https://doi.org/10.1016/j.neuron.2008.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Simeon D, Yehuda R, Cunill R, Knutelska M, Putnam FW, Smith LM (2007) Factors associated with resilience in healthy adults. Psychoneuroendocrinology 32(8–10):1149–1152. https://doi.org/10.1016/j.psyneuen.2007.08.005

    Article  PubMed  Google Scholar 

  113. Yu XN, Zhang JX (2007) Factor analysis and psychometric evaluation of the Connor-Davidson Resilience Scale (CD-RISC) with Chinese people. Soc Behav Personal 35(1):19–30. https://doi.org/10.2224/sbp.2007.35.1.19

    Article  Google Scholar 

  114. O'Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4(1):95–102. https://doi.org/10.1038/82959

    Article  CAS  PubMed  Google Scholar 

  115. Dutcher JM, Creswell JD (2018) The role of brain reward pathways in stress resilience and health. Neurosci Biobehav Rev 95:559–567. https://doi.org/10.1016/j.neubiorev.2018.10.014

    Article  PubMed  Google Scholar 

  116. Hundt NE, Williams AM, Mendelson J, Nelson-Gray RO (2013) Coping mediates relationships between reinforcement sensitivity and symptoms of psychopathology. Personality Individ Differ 54(6):726–731. https://doi.org/10.1016/j.paid.2012.11.028

    Article  Google Scholar 

  117. Lighthall NR, Sakaki M, Vasunilashorn S, Nga L, Somayajula S, Chen EY, Samii N, Mather M (2012) Gender differences in reward-related decision processing under stress. Soc Cogn Affect Neurosci 7(4):476–484. https://doi.org/10.1093/scan/nsr026

    Article  PubMed  Google Scholar 

  118. Hakamata Y, Iwase M, Iwata H, Kobayashi T, Tamaki T, Nishio M, Matsuda H, Ozaki N, Inada T (2009) Gender difference in relationship between anxiety-related personality traits and cerebral brain glucose metabolism. Psychiatry Res 173(3):206–211. https://doi.org/10.1016/j.pscychresns.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  119. Wang JJ, Korczykowski M, Rao HY, Fan Y, Pluta J, Gur RC, McEwen BS, Detre JA (2007) Gender difference in neural response to psychological stress. Soc Cogn Affect Neursci 2(3):227–239. https://doi.org/10.1093/scan/nsm018

    Article  Google Scholar 

  120. Wrase J, Klein S, Gruesser SM, Hermann D, Flor H, Mann K, Braus DF, Heinz A (2003) Gender differences in the processing of standardized emotional visual stimuli in humans: a functional magnetic resonance imaging study. Neurosci Lett 348(1):41–45. https://doi.org/10.1016/S0304-3940(03)00565-2

    Article  CAS  PubMed  Google Scholar 

  121. Goel N, Workman JL, Lee TT, Innala L, Viau V (2014) Sex differences in the HPA axis. Compr Physiol 4(3):1121–1155. https://doi.org/10.1002/cphy.c130054

    Article  PubMed  Google Scholar 

  122. Kudielka BM, Kirschbaum C (2005) Sex differences in HPA axis responses to stress: a review. Biol Psychol 69(1):113–132. https://doi.org/10.1016/j.biopsycho.2004.11.009

    Article  PubMed  Google Scholar 

  123. Mikolajczak M, Roy E, Luminet O, De Timary P (2008) Resilience and hypothalamic-pituitary-adrenal axis reactivity under acute stress in young men. Stress 11(6):477–482. https://doi.org/10.1080/10253890701850262

    Article  PubMed  Google Scholar 

  124. Romeo RD (2015) Perspectives on stress resilience and adolescent neurobehavioral function. Neurobiol Stress 1:128–133. https://doi.org/10.1016/j.ynstr.2014.11.001

    Article  PubMed  Google Scholar 

  125. McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54(5):20–23. https://doi.org/10.1016/j.metabol.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  126. Gillespie CF, Nemeroff CB (2005) Hypercortisolemia and depression. Psychosom Med 67(Suppl 1):S26–28. https://doi.org/10.1097/01.psy.0000163456.22154.d2

    Article  PubMed  Google Scholar 

  127. Pruessner JC, Declovic K, Khalili-Mahani N, Engert V, Pruessner M, Buss C, Renwick R, Dagher A, Meaney MJ, Lupien S (2008) Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance Imaging studies. Biol Psychiatry 63(2):234–240. https://doi.org/10.1016/j.biopsych.2007.04.041

    Article  PubMed  Google Scholar 

  128. Dedovic K, Duchesne A, Andrews J, Engert V, Pruessner JC (2009) The brain and the stress axis: the neural correlates of cortisol regulation in response to stress. Neuroimage 47(3):864–871. https://doi.org/10.1016/j.neuroimage.2009.05.074

    Article  CAS  PubMed  Google Scholar 

  129. Oldehinkel AJ, Bouma EM (2011) Sensitivity to the depressogenic effect of stress and HPA-axis reactivity in adolescence: a review of gender differences. Neurosci Biobehav Rev 35(8):1757–1770. https://doi.org/10.1016/j.neubiorev.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  130. Mueller KB, Lu Q, Mohammad NN, Luu V, McCurley A, Williams GH, Adler GK, Karas RH, Jaffe IZ (2014) Estrogen receptor inhibits mineralocorticoid receptor transcriptional regulatory function. Endocrinology 155(11):4461–4472. https://doi.org/10.1210/en.2014-1270

    Article  CAS  Google Scholar 

  131. Turner BB (1990) Sex difference in glucocorticoid binding in rat pituitary is estrogen dependent. Life Sci 46(19):1399–1406. https://doi.org/10.1016/0024-3205(90)90340-W

    Article  CAS  PubMed  Google Scholar 

  132. Castren M, Patchev VK, Almeida OFX, Holsboer F, Trapp T, Castren E (1995) Regulation of rat mineralocorticoid receptor expression in neurons by progesterone. Endocrinology 136(9):3800–3806. https://doi.org/10.1210/en.136.9.3800

    Article  CAS  PubMed  Google Scholar 

  133. Wei J, Yuen EY, Liu W, Li X, Zhong P, Karatsoreos IN, McEwen BS, Yan Z (2014) Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Mol Psychiatry 19(5):588–598. https://doi.org/10.1038/mp.2013.83

    Article  CAS  PubMed  Google Scholar 

  134. Goldstein JM, Jerram M, Abbs B, Whitfield-Gabrieli S, Makris N (2010) Sex differences in stress response circuitry activation dependent on female hormonal cycle. J Neurosci 30(2):431–438. https://doi.org/10.1523/Jneurosci.3021-09.2010

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gennatas ED, Avants BB, Wolf DH, Satterthwaite TD, Ruparel K, Ciric R, Hakonarson H, Gur RE, Gur RC (2017) Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from childhood to young adulthood. J Neurosci 37(20):5065–5073. https://doi.org/10.1523/Jneurosci.3550-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Satterthwaite TD, Shinohara RT, Wolf DH, Hopson RD, Elliott MA, Vandekar SN, Ruparel K, Calkins ME, Roalf DR, Gennatas ED, Jackson C, Erus G, Prabhakaran K, Davatzikos C, Detre JA, Hakonarson H, Gur RC, Gur RE (2014) Impact of puberty on the evolution of cerebral perfusion during adolescence. Proc Natl Acad Sci USA 111(23):8643–8648. https://doi.org/10.1073/pnas.1400178111

    Article  CAS  PubMed  Google Scholar 

  137. Kong F, Wang X, Hu SY, Liu J (2015) Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults. Neuroimage 123:165–172. https://doi.org/10.1016/j.neuroimage.2015.08.020

    Article  PubMed  Google Scholar 

  138. Klika JB, Herrenkohl TI (2013) A review of developmental research on resilience in maltreated children. Trauma Violence Abus 14(3):222–234. https://doi.org/10.1177/1524838013487808

    Article  Google Scholar 

  139. Jaffee SR, Caspi A, Moffitt TE, Polo-Tomas M, Taylor A (2007) Individual, family, and neighborhood factors distinguish resilient from non-resilient maltreated children: a cumulative stressors model. Child Abuse Neglect 31(3):231–253. https://doi.org/10.1016/j.chiabu.2006.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  140. LaBar KS, Gitelman DR, Mesulam MM, Parrish TB (2001) Impact of signal-to-noise on functional MRI of the human amygdala. NeuroReport 12(16):3461–3464. https://doi.org/10.1097/00001756-200111160-00017

    Article  CAS  PubMed  Google Scholar 

  141. Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19(2):430–441. https://doi.org/10.1016/S1053-8119(03)00073-9

    Article  CAS  PubMed  Google Scholar 

  142. Kressel HY (2017) Setting sail: 2017. Radiology 282(1):4–6. https://doi.org/10.1148/radiol.2016162471

    Article  PubMed  Google Scholar 

  143. Lui S, Zhou XHJ, Sweeney JA, Gong QY (2016) Psychoradiology: the frontier of neuroimaging in psychiatry. Radiology 281(2):357–372. https://doi.org/10.1148/radiol.2016152149

    Article  PubMed  PubMed Central  Google Scholar 

  144. Port JD (2018) Diagnosis of attention deficit hyperactivity disorder by using MR imaging and radiomics: a potential tool for clinicians. Radiology 287(2):631–632. https://doi.org/10.1148/radiol.2018172804

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Nos. 31800963, 81621003 and 81820108018), the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, Grant No. IRT16R52) of China, the China Postdoctoral Science Foundation (Grant No. 2019M653421), and the Postdoctoral Interdisciplinary Research Project of Sichuan University. Dr. Gong would also like to acknowledge the support from his Changjiang Scholar Professorship Award (Award No. T2014190) of China, the Functional and Molecular Imaging Key Laboratory of Sichuan Province (FMIKLSP, Grant 2019JDS0044), and the American CMB Distinguished Professorship Award (Award No. F510000/G16916411) administered by the Institute of International Education, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyong Gong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval and consent to participate

The study was approved by the local research ethics committee of West China Hospital, Sichuan University. All participants and their parents gave their written informed consent before the experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yang, C., Zhao, Y. et al. Sex-linked neurofunctional basis of psychological resilience in late adolescence: a resting-state functional magnetic resonance imaging study. Eur Child Adolesc Psychiatry 29, 1075–1087 (2020). https://doi.org/10.1007/s00787-019-01421-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-019-01421-6

Keywords

Navigation