Skip to main content
Log in

Basal and dentoalveolar transverse parameters in different sagittal and vertical malocclusions in adults: a comparative study

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

This study sought to three-dimensionally (3D) evaluate the maxillomandibular basal bone and dentoalveolar widths using cone-beam computed tomography (CBCT) scans in adult Chinese populations with different vertical and sagittal facial skeletal patterns whilst no apparent posterior dental crossbite.

Materials and methods

The retrospective cross-sectional comparative study enrolled CBCT images of 259 adult patients (125 males and 134 females). The subjects were divided into the hyperdivergent(n = 82), hypodivergent(n = 88), and normodivergent(n = 89) groups based on the Jarabak ratio (S-GO/N-Me), which were further divided into three subgroups of skeletal Class I, II and III, based on both the ANB angle and AF-BF parameters. ANOVA was used to analyze the extracted data of the studied groups. The intra- and inter-observer reliability was analyzed using the intra-class correlation coefficient (ICC).

Results

In all three vertical facial skeletal patterns, the skeletal Class II had significantly smaller mandibular basal bone width compared to skeletal Class I and Class III, both at the first molar and first premolar levels. The skeletal Class III seemed to have smaller maxillary basal bone width compared to skeletal Class I and Class II malocclusions; however, a significant difference was found only in the normodivergent pattern. As for the dentoalveolar compensation, it was most notable that in the hypodivergent growth pattern, the skeletal Class II had significantly smaller maxillary dentoalveolar width compared to the Class I and Class III groups, both at the first molar and first premolar levels.

Conclusions

Based on the sample in the present study, skeletal Class II has the narrowest mandibular basal bone regardless of the vertical facial skeletal pattern.

Clinical relevance

For Chinese adults with no apparent transverse discrepancy, the maxillomandibular basal bone and dentoalveolar widths are revealed in specific categories based on different vertical and sagittal facial skeletal patterns. In diagnosis and treatment planning, particular attention should be paid to skeletal Class II for possibly existing mandibular narrowing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vanarsdall RWhite Jr (1994) RJy Three-dimensional analysis for skeletal problems. Int J Adult Orthodon Orthognath Surg 9: 159

  2. Kutin GHawes RRJAjoo (1969) Posterior cross-bites in the deciduous and mixed dentitions. Am J Orthod 56:491–504. https://doi.org/10.1016/0002-9416(69)90210-3

    Article  Google Scholar 

  3. Almeida RRd A, MRd, Oltramari-Navarro PVP et al (2012) Posterior crossbite-treatment and stability. J Appl Oral Sci 20:286–294. https://doi.org/10.1590/S1678-77572012000200026

    Article  Google Scholar 

  4. Bishara SE, Warren JJ, Broffitt B et al (2006) Changes in the prevalence of nonnutritive sucking patterns in the first 8 years of life. Am J Orthod Dentofac Orthop 130:31–36. https://doi.org/10.1016/j.ajodo.2004.11.033

    Article  Google Scholar 

  5. Luzzi V, Ierardo G, Viscogliosi A et al (2013) Allergic rhinitis as a possible risk factor for malocclusion: a case–control study in children. Int J Paediatr Dent 23:274–278. https://doi.org/10.1111/ipd.12003

    Article  PubMed  Google Scholar 

  6. Nanda R, Snodell SFBollu P (2012) Transverse growth of maxilla and mandible. In Semin Orthod. Elsevier

  7. Lee K-J, Choi S-H, Choi T-H et al (2018) Maxillary transverse expansion in adults: Rationale, appliance design, and treatment outcomes. In Semin Orthod. Elsevier

  8. Hwang S, Song J, Lee J et al (2018) Three-dimensional evaluation of dentofacial transverse widths in adults with different sagittal facial patterns. Am J Orthod Dentofac Orthop 154:365–374. https://doi.org/10.1016/j.ajodo.2017.11.041

    Article  Google Scholar 

  9. Janson G, Bombonatti R, Cruz KS et al (2004) Buccolingual inclinations of posterior teeth in subjects with different facial patterns. Am J Orthod Dentofac Orthop 125:316–322. https://doi.org/10.1016/j.ajodo.2003.03.010

    Article  Google Scholar 

  10. Ross VA, Isaacson RJ, Germane N et al (1990) Influence of vertical growth pattern on faciolingual inclinations and treatment mechanics. Am J Orthod Dentofac Orthop 98:422–429. https://doi.org/10.1016/S0889-5406(05)81651-8

    Article  CAS  Google Scholar 

  11. Vanarsdall RL Jr (1999) Transverse dimension and long-term stability. In Semin Orthod. Elsevier

  12. Skieller V, Björk ALinde-Hansen TJA (1984) Prediction of mandibular growth rotation evaluated from a longitudinal implant sample. Am J Orthod 86:359–370. https://doi.org/10.1016/S0002-9416(84)90028-9

    Article  CAS  PubMed  Google Scholar 

  13. Franchi L, Baccetti TJO c (2005) Transverse maxillary deficiency in class ii and class iii malocclusions: a cephalometric and morphometric study on postero-anterior films. Orthod Craniofac Res 8:21–28. https://doi.org/10.1111/j.1601-6343.2004.00312.x

    Article  CAS  PubMed  Google Scholar 

  14. Hwang S, Noh Y, Choi YJ et al (2018) Dentofacial transverse development in koreans according to skeletal maturation: a cross-sectional study. Korean J Orthod 48:39–47

    Article  PubMed  Google Scholar 

  15. Lee KJ, Jeon HH, Boucher N et al (2022) Transverse analysis of maxilla and mandible in adults with normal occlusion: a cone beam computed tomography study. J Imaging 8:100. https://doi.org/10.3390/jimaging8040100

    Article  PubMed  PubMed Central  Google Scholar 

  16. Malkoc S, Sari Z, Usumez S et al (2005) The effect of head rotation on cephalometric radiographs. 27:315–321. https://doi.org/10.1093/ejo/cjh098

  17. Major PW, Johnson DE, Hesse KL et al (1994) Landmark identification error in posterior anterior cephalometrics. Angle Orthod 64:447–454. https://doi.org/10.1043/0003-3219(1994)064<0447:LIEIPA>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  18. Krishnaswamy NJA (2019) Expansion in the absence of crossbite–rationale and protocol. J APOS Trends Orthod 9:126–137

    Article  Google Scholar 

  19. Lee K-M, Hwang H-SC J-HJAO (2014) Comparison of transverse analysis between posteroanterior cephalogram and cone-beam computed tomography. J Angle Orthod 84:715–719. https://doi.org/10.2319/072613-555.1

    Article  Google Scholar 

  20. Cattaneo PM, Bloch CB, Calmar D et al (2008) Comparison between conventional and cone-beam computed tomography–generated cephalograms. 134:798–802. https://doi.org/10.1016/j.ajodo.2008.07.008

  21. Suri LTaneja PJAjoo (2008) Surgically assisted rapid palatal expansion: a literature review. J Am J Orthod Dentofac Orthop 133:290–302. https://doi.org/10.1016/j.ajodo.2007.01.021

    Article  Google Scholar 

  22. Miner RM, Al Qabandi S, Rigali PH et al (2012) Cone-beam computed tomography transverse analysis. Part i: normative data. J Am J Orthod Dentofac Orthop 142:300–307

    Article  Google Scholar 

  23. Miner RM, Al Qabandi S, Rigali PH et al (2015) Cone-beam computed tomography transverse analyses. Part 2: Measures Perform 148:253–263. https://doi.org/10.1016/j.ajodo.2015.03.027

    Article  Google Scholar 

  24. Horn AJJ (1992) Facial height index. Am J Orthod Dentofac Orthop 102:180–186. https://doi.org/10.1016/0889-5406(92)70031-5

    Article  CAS  Google Scholar 

  25. Abdulghani EA, Al-Sosowa AA, Alhammadi MS et al (2022) Three-dimensional assessment of the favorability of maxillary posterior teeth intrusion in different skeletal classes limited by the vertical relationship with the maxillary sinus floor. J Head Face Med 18:1–10. https://doi.org/10.1186/s13005-022-00316-3

    Article  Google Scholar 

  26. Al-Somairi MAA, Liu Y, Almashraq AA et al (2023) Correlation between the three-dimensional maxillomandibular complex parameters and pharyngeal airway dimensions in different sagittal and vertical malocclusions. J Dentomaxillofacial Radiol 52:20220346. https://doi.org/10.1259/dmfr.20220346

    Article  Google Scholar 

  27. Almaqrami BS, Alhammadi MS, Al-somairi MAA et al (2022) Three‐dimensional assessment of asymmetric mid‐palatal suture expansion assisted by a customized microimplant‐supported rapid palatal expander in non‐growing patients: uncontrolled clinical trial. J Orthod Craniofac Res 25:234–242. https://doi.org/10.1111/ocr.12531

    Article  Google Scholar 

  28. Thilander BLennartsson BJ (2002) A study of children with unilateral posterior crossbite, treated and untreated, in the deciduous dentition occlusal and skeletal characteristics of significance in predicting the long-term outcome. J Orofac Orthopedics/Fortschritte Der Kieferorthopädie 63:371–383. https://doi.org/10.1007/s00056-002-0210-6

    Article  Google Scholar 

  29. Jacobs JD, Bell WH, Williams CE et al (1980) Control of the transverse dimension with surgery and orthodontics. Am J Orthod 77:284–306. https://doi.org/10.1016/0002-9416(80)90083-4

    Article  CAS  PubMed  Google Scholar 

  30. Chen F, Wu LP, Terada K et al (2007) Longitudinal intermaxillary relationships in class iii malocclusions with low and high mandibular plane angles. 77: 397–403. https://doi.org/10.2319/0003-3219(2007)077[0397:LIRICI]2.0.CO;2

  31. Ma T, Wang Y-h, Zhang C-x et al (2023) A novel maxillary transverse deficiency diagnostic method based on ideal teeth position. J BMC Oral Health 23:82. https://doi.org/10.1186/s12903-023-02790-w

    Article  Google Scholar 

  32. Koo Y-J, Choi S-H, Keum B-T et al (2017) Maxillomandibular arch width differences at estimated centers of resistance: comparison between normal occlusion and skeletal class iii malocclusion. J Korean J Orthod 47:167–175. https://doi.org/10.4041/kjod.2017.47.3.167

    Article  PubMed  Google Scholar 

  33. Wagner DMChung C-HJAJoO (2005) Transverse growth of the maxilla and mandible in untreated girls with low, average, and high mp-sn angles: a longitudinal study. J Am J Orthod Dentofac Orthop 128:716–723

    Article  Google Scholar 

  34. Baccetti T, Franchi L, Cameron CG et al (2001) Treatment timing for rapid maxillary expansion. 71:343–350. https://doi.org/10.1043/0003-3219(2001)071%3C0343:TTFRME%3E2.0.CO;2

  35. Bhutta N, Israr JIjazbds AJPO (2013) Comparison of dental and alveolar arch widths in class i and class ii division 1 malocclusion. J Pakistan Oral Dent J 33:289–294

    Google Scholar 

  36. Uysal T, Memili B, Usumez S et al (2005) Dental and alveolar arch widths in normal occlusion, class ii division 1 and class ii division 2. 75:941–947. https://doi.org/10.1043/0003-3219(2005)75[941:DAAAWI]2.0.CO;2

  37. Frohlich FJTEOS (1961) A longitudinal study of untreated class ii type malocclusion. J Trans Eur Orthod Soc 37:137–159

    Google Scholar 

  38. Shu R, Han X, Wang Y et al (2013) Comparison of arch width, alveolar width and buccolingual inclination of teeth between class ii division 1 malocclusion and class i occlusion. Angle Orthod 83:246–252. https://doi.org/10.2319/052412-427.2

    Article  PubMed  Google Scholar 

  39. Cortella S, Shofer FSGhafari JJ (1997) Transverse development of the jaws: norms for the posteroanterior cephalometric analysis. Am J Orthod Dentofac Orthop 112:519–522. https://doi.org/10.1016/S0889-5406(97)70079-9

    Article  CAS  Google Scholar 

  40. Liu F, Huang H, Shi X et al (2023) A study of transverse maxillomandibular discrepancy and dental compensation in early mixed dentition with skeletal class iii malocclusion without posterior crossbite. PLoS ONE 18:e0287343. https://doi.org/10.1371/journal.pone.0287343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grippaudo C, Oliva B, Greco AL et al (2013) Relationship between vertical facial patterns and dental arch form in class ii malocclusion. J Progress Orthod 14:1–7. https://doi.org/10.1186/2196-1042-14-43

    Article  Google Scholar 

  42. Hesby RM, Marshall SD, Dawson DV et al (2006) Transverse skeletal and dentoalveolar changes during growth. J Am J Orthod Dentofac Orthop 130:721–731

    Article  Google Scholar 

  43. Huertas DGhafari JJAjoo (2001) New Posteroanterior cephalometric norms: a comparison with craniofacial measures of children treated with palatal expansion. J Angle Orthod 71:285–292. https://doi.org/10.1043/0003-3219(2001)071%3C0285:NPCNAC%3E2.0.CO;2

    Article  Google Scholar 

  44. Tsunori M, Mashita MKasai KJ (1998) Relationship between facial types and tooth and bone characteristics of the mandible obtained by ct scanning. Angle Orthod 68:557–562. https://doi.org/10.1043/0003-3219(1998)068%3C0557:RBFTAT%3E2.3.CO;2

    Article  CAS  PubMed  Google Scholar 

  45. RA F (1978) Relationship of vertical maxillary dysplasias, bite force, and integrated emg. in Abstracts of conference on craniofacial research. University of Michigan Center for Human Growth and Development

  46. Proffit W, Fields HWNixon WJ (1983) Occlusal forces in normal-and long-face adults. J Dent Res 62:566–570. https://doi.org/10.1177/002203458306200512

    Article  CAS  PubMed  Google Scholar 

  47. Spronsen Pv, Weijs W, Valk J et al (1991) Relationships between jaw muscle cross-sections and craniofacial morphology in normal adults, studied with magnetic resonance imaging. Eur J Orthod 13:351–361. https://doi.org/10.1093/ejo/13.5.351

    Article  Google Scholar 

  48. Alarashi M, Franchi L, Marinelli A et al (2003) Morphometric analysis of the transverse dentoskeletal features of class ii malocclusion in the mixed dentition. J Angle Orthod 73:21–25. https://doi.org/10.1043/0003-3219(2003)073%3C0021:MAOTTD%3E2.0.CO;2

    Article  Google Scholar 

Download references

Funding

author(s) disclosed receipt of the following fnancial support for the research, authorship, and/or publication of this article: This study is supported by Major Special Science and Technology Project of Sichuan Province (grant no. 2022ZDZX0031). And the National Natural Science Foundation of China (no. 82371003).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Ehab A. Abdulghani, Abeer A. Al-Sosowa, and Maged S. Alhammadi, Wei Zheng, and Yu Li.; Data curation, Ehab A. Abdulghani, BaoCheng Cao,and Najah Alhashimi; Formal analysis, Ehab A. Abdulghani,and Abeer A. Al-Sosowa; Investigation, Ehab A. Abdulghani, BaoCheng Cao; Methodology, Ehab A. Abdulghani and Abeer A. Al-Sosowa; Project administration, Ehab A. Abdulghani, Wei Zheng and Yu Li.; Resources, Ehab A. Abdulghani ,and Abeer A. Al-Sosowa.; Software, Ehab A. Abdulghani; Supervision, Yu Li ,and Wei Zheng; Validation, Ehab A. Abdulghani and Maged S. Alhammadi; Visualization, Ehab A. Abdulghani, and BaoCheng Cao; Writing – original draft, Maged S. Alhammadi, and Najah Alhashimi; Writing – review & editing, Ehab A. Abdulghani, Abeer A. Al-Sosowa. Wei Zheng and Yu Li. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Wei Zheng or Yu Li.

Ethics declarations

Ethics approval

This is a retrospective cross-sectional study approved by the Institutional Ethical Committee (WCHSIRB-CT-2021-331) at the West China Hospital of Stomatology, Sichuan University, China.

Informed consent

The requirement for informed consent was waived due to the retrospective nature of the study.

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflicts of interest with respect to the authorship and/or publication of this.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulghani, E.A., Al-Sosowa, A.A., Alhashimi, N. et al. Basal and dentoalveolar transverse parameters in different sagittal and vertical malocclusions in adults: a comparative study. Clin Oral Invest 28, 276 (2024). https://doi.org/10.1007/s00784-024-05630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-024-05630-5

Keywords

Navigation