Skip to main content

Advertisement

Log in

Improving accuracy of early dental carious lesions detection using deep learning-based automated method

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To investigate the effectiveness of a convolutional neural network (CNN) in detecting healthy teeth and early carious lesions on occlusal surfaces and to assess the applicability of this deep learning algorithm as an auxiliary aid.

Materials and methods

A total of 2,481 posterior teeth (2,459 permanent and 22 deciduous teeth) with varying stages of carious lesions were classified according to the International Caries Detection and Assessment System (ICDAS). After clinical evaluation, ICDAS 0 and 2 occlusal surfaces were photographed with a professional digital camera. VGG-19 was chosen as the CNN and the findings were compared with those of a reference examiner to evaluate its detection efficiency. To verify the effectiveness of the CNN as an auxiliary detection aid, three examiners (an undergraduate student (US), a newly graduated dental surgeon (ND), and a specialist in pediatric dentistry (SP) assessed the acquired images (Phase I). In Phase II, the examiners reassessed the same images using the CNN-generated algorithms.

Results

The training dataset consisted of 8,749 images, whereas the test dataset included 140 images. VGG-19 achieved an accuracy of 0.879, positive agreement of 0.827, precision of 0.949, negative agreement 0.800, and an F1-score of 0.887. In Phase I, the accuracy rates for examiners US, ND, and SP were 0.543, 0.771, and 0.807, respectively. In Phase II, the accuracy rates improved to 0.679, 0.886, and 0.857 for the respective examiners. The number of correct answers was significantly higher in Phase II than in Phase I for all examiners (McNemar test;P<0.05).

Conclusions

VGG-19 demonstrated satisfactory performance in the detection of early carious lesions, as well as an auxiliary detection aid.

Clinical relevance

Automated detection using deep learning algorithms is an important aid in detecting early caries lesions and improves the accuracy of the disease detection, enabling quicker and more reliable clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1789-1858. https://doi.org/10.1016/S0140-6736(18)32279-7

  2. Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreño CC, Kearns C, Benzian H, Allison P, Watt RG (2019) Oral diseases: a global public health challenge. Lancet 394(10194):249–260. https://doi.org/10.1016/S0140-6736(19)31146-8

    Article  PubMed  Google Scholar 

  3. Lima JEO (2007) Cárie dentária: um novo conceito. Rev Dent Press Ortodon Ortop Facial 12(6). https://doi.org/10.1590/S1415-54192007000600012

  4. García-Pérez Á, Irigoyen-Camacho ME, Borges-Yáñez SA, Zepeda-Zepeda MA, Bolona-Gallardo I, Maupomé G (2017) Impact of caries and dental fluorosis on oral health-related quality of life: a cross-sectional study in schoolchildren receiving water naturally fluoridated at above-optimal levels. Clin Oral Investig 21(9):2771–2780. https://doi.org/10.1007/s00784-017-2079-1

    Article  PubMed  Google Scholar 

  5. Lacerda JT de, Castilho EA de, Calvo MCM, Freitas SFT de (2008) Saúde bucal e o desempenho diário de adultos em Chapecó, Santa Catarina, Brasil. Cad Saúde Pública 24(8). https://doi.org/10.1590/S0102-311X2008000800013

  6. Mota-Veloso I, Soares ME, Alencar BM, Marques LS, Ramos-Jorge ML, Ramos-Jorge J (2016) Impact of untreated dental caries and its clinical consequences on the oral health-related quality of life of schoolchildren aged 8–10 years. Qual Life Res 25(1):193–9. https://doi.org/10.1007/s11136-015-1059-7

    Article  PubMed  Google Scholar 

  7. Onoriobe U, Rozier RG, Cantrell J, King RS (2014) Effects of enamel fluorosis and dental caries on quality of life. J Dent Res 93(10):972–9. https://doi.org/10.1177/0022034514548705

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ramos-Jorge J, Pordeus IA, Ramos-Jorge ML, Marques LS, Paiva SM (2014) Impact of untreated dental caries on quality of life of preschool children: different stages and activity. Community Dent Oral Epidemiol 42(4):311–22. https://doi.org/10.1111/cdoe.12086

    Article  PubMed  Google Scholar 

  9. Scarpelli AC, Paiva SM, Viegas CM, Carvalho AC, Ferreira FM, Pordeus IA (2013) Oral health-related quality of life among Brazilian preschool children. Community Dent Oral Epidemiol 41(4):336–44. https://doi.org/10.1111/cdoe.12022

    Article  PubMed  Google Scholar 

  10. Sheiham A, Steele JG, Marcenes W, Tsakos G, Finch S, Walls AW (2001) Prevalence of impacts of dental and oral disorders and their effects on eating among older people; a national survey in Great Britain. Community Dent Oral Epidemiol 29(3):195–203. https://doi.org/10.1034/j.1600-0528.2001

    Article  PubMed  Google Scholar 

  11. Boeira GF, Correa MB, Peres KG, Peres MA, Santos IS, Matijasevich A, Barros AJ, Demarco FF (2012) Caries is the main cause for dental pain in childhood: findings from a birth cohort. Caries Res 46(5):488–95. https://doi.org/10.1159/000339491

    Article  PubMed  Google Scholar 

  12. Brasil. SB Brasil 2010: Pesquisa Nacional de Saúde Bucal: resultados principais. Ministério da Saúde, 2012. bvsms.saude.gov.br/bvs/publicacoes/pesquisa_nacional_saude_bucal.pdf. accessed 1 Feb 2023

  13. World Health Organization (WHO) (2013) Oral health surveys: basics methods, 5th edn. Word Health Organization, Geneva

    Google Scholar 

  14. Pitts NB, Baez RJ, Diaz-Guillory C, Donly KJ, Alberto Feldens C, McGrath C, Phantumvanit P, Seow WK, Sharkov N, Songpaisan Y, Tinanoff N, Twetman S (2019) Early Childhood Caries: IAPD Bangkok Declaration. J Dent Child (Chic) 86(2):72

    PubMed  Google Scholar 

  15. Machiulskiene V, Campus G, Carvalho JC, Dige I, Ekstrand KR, Jablonski-Momeni A, Maltz M, Manton DJ, Martignon S, Martinez-Mier EA, Pitts NB, Schulte AG, Splieth CH, Tenuta LMA, Ferreira Zandona A, Nyvad B (2020) Terminology of Dental Caries and Dental Caries Management: Consensus Report of a Workshop Organized by ORCA and Cariology Research Group of IADR. Caries Res. 54(1):7–14. https://doi.org/10.1159/000503309

    Article  PubMed  Google Scholar 

  16. Peters MC, McLean ME (2001) Minimally invasive operative care. I. Minimal intervention and concepts for minimally invasive cavity preparations. J Adhes Dent 3(1):7–16

    PubMed  Google Scholar 

  17. Ericson D, Kidd E, McComb D, Mjör I, Noack MJ (2003) Minimally Invasive Dentistry–concepts and techniques in cariology. Oral Health Prev Dent 1(1):59–72

    PubMed  Google Scholar 

  18. Marinho VA, Pereira GM (1998) Revisão de literatura cárie: diagnóstico e plano de tratamento. Rev Un Alfenas 4:27–37

    Google Scholar 

  19. Clovis JB, Horowitz AM, Kleinman DV, Wang MQ, Massey M (2012) Maryland dental hygienists’ knowledge, opinions and practices regarding dental caries prevention and early detection. J Dent Hyg 86(4):292–305

    PubMed  Google Scholar 

  20. Manski MC, Parker ME (2010) Early childhood caries: knowledge, attitudes, and practice behaviors of Maryland dental hygienists. J Dent Hyg 84(4):190–5

    PubMed  Google Scholar 

  21. Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, Pitts NB (2007) The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries. Community Dent Oral Epidemiol 35(3):170–8. https://doi.org/10.1111/j.1600-0528.2007.00347.x

    Article  PubMed  Google Scholar 

  22. Abogazalah N, Ando M (2017) Alternative methods to visual and radiographic examinations for approximal caries detection. J Oral Sci. 59(3):315–322. https://doi.org/10.2334/josnusd.16-0595

    Article  PubMed  Google Scholar 

  23. Carvalho RN, Letieri ADS, Vieira TI, Santos TMPD, Lopes RT, Neves AA, Pomarico L (2018) Accuracy of visual and image-based ICDAS criteria compared with a micro-CT gold standard for caries detection on occlusal surfaces. Braz Oral Res 10(32):e60. https://doi.org/10.1590/1807-3107bor-2018.vol32.0060

    Article  Google Scholar 

  24. Foros P, Oikonomou E, Koletsi D, Rahiotis C (2021) Detection methods for early caries diagnosis: A systematic review and meta-analysis. Caries Res 55(4):247–259

    Article  PubMed  Google Scholar 

  25. Hwang JJ, Jung YH, Cho BH, Heo MS (2019) An overview of deep learning in the field of dentistry. Imaging Sci Dent 49(1):1–7. https://doi.org/10.5624/isd.2019.49.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  27. Schwendicke F, Samek W, Krois J (2020) Artificial Intelligence in Dentistry: Chances and Challenges. J Dent Res 99(7):769–774. https://doi.org/10.1177/0022034520915714

    Article  PubMed  Google Scholar 

  28. Shan T, Tay FR, Gu L (2021) Application of Artificial Intelligence in Dentistry. J Dent Res 100(3):232–244. https://doi.org/10.1177/0022034520969115

    Article  PubMed  Google Scholar 

  29. Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117

    Article  PubMed  Google Scholar 

  30. Karimian N, Salehi HS, Mahdian M, Alnajjar, H, Tadinada A (2018) Deep learning classifier with optical coherence tomography images for early dental caries detection. Proc SPIE 10473 Lasers in Dentistry XXIV e: 1047304. https://doi.org/10.1117/12.2291088

  31. Lee JH, Kim DH, Jeong SN, Choi SH (2018) Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent 77:106–111. https://doi.org/10.1016/j.jdent.2018.07.015

    Article  PubMed  Google Scholar 

  32. Casalegno F, Newton T, Daher R, Abdelaziz M, Lodi-Rizzini A, Schürmann F, Krejci I, Markram H (2019) Caries detection with near-infrared transillumination using deep learning. J Dent Res 98(11):1227–1233. https://doi.org/10.1177/0022034519871884

    Article  PubMed  Google Scholar 

  33. Schwendicke F, Golla T, Dreher M, Krois J (2019) Convolutional neural networks for dental image diagnostics: A scoping review. J Dent 91:103226. https://doi.org/10.1016/j.jdent.2019.103226

    Article  PubMed  Google Scholar 

  34. Askar H, Krois J, Rohrer C, Mertens S, Elhennawy K, Ottolenghi L, Mazur M, Paris S, Schwendicke F (2021) Detecting white spot lesions on dental photography using deep learning: A pilot study. J Dent 107:103615. https://doi.org/10.1016/j.jdent.2021.103615

    Article  PubMed  Google Scholar 

  35. Ding B, Zhang Z, Liang Y, Wang W, Hao S, Meng Z, Guan L, Hu Y, Guo B, Zhao R, Lv Y (2021) Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm. Ann Transl Med 9(21):1622. https://doi.org/10.21037/atm-21-4805

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kühnisch J, Meyer O, Hesenius M, Hickel R, Gruhn V (2022) Caries Detection on Intraoral Images Using Artificial Intelligence. Journal of Dental Research 101(2):158–165. https://doi.org/10.1177/00220345211032524

    Article  PubMed  Google Scholar 

  37. Li RZ, Zhu JX, Wang YY, Zhao SY, Peng CF, Zhou Q, Sun RQ, Hao AM, Li S, Wang Y, Xia B (2021) [Development of a deep learning based prototype artificial intelligence system for the detection of dental caries in children]. Zhonghua Kou Qiang Yi Xue Za Zhi 56(12):1253-1260. https://doi.org/10.3760/cma.j.cn112144-20210712-00323

  38. Park EY, Cho H, Kang S, Jeong S, Kim EK (2022) Caries detection with tooth surface segmentation on intraoral photographic images using deep learning. BMC Oral Health 22(1):573. https://doi.org/10.1186/s12903-022-02589-1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rashid U, Javid A, Khan AR, Liu L, Ahmed A, Khalid O, Saleem K, Meraj S, Iqbal U, Nawaz R (2022) A hybrid mask RCNN-based tool to localize dental cavities from real-time mixed photographic images. PeerJ Computer Sci 8:e888. https://doi.org/10.7717/peerj-cs.888

    Article  Google Scholar 

  40. Zang XY, Qiao B, Meng FH, Jin NH, Hu SX, Li LB, Xing LJ, Chen F, Wang Y, Zhang HZ (2022) [A deep learning segmentation model for detecting caries in molar teeth]. Zhonghua Yi Xue Za Zhi 102(32):2538-2540. https://doi.org/10.3760/cma.j.cn112137-20220422-008957

  41. Zhang X, Liang Y, Li W, Liu C, Gu D, Sun W, Miao L (2022) Development and evaluation of deep learning for screening dental caries from oral photographs. Oral Dis 28(1):173–181. https://doi.org/10.1111/odi.13735

    Article  PubMed  Google Scholar 

  42. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HC, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, Korevaar DA, Cohen JF (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Bmj 351:h5527

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mongan Moy JL, Kahn CE (2020) Checklist for artificial intelligence in medical imaging (CLAIM): a Guide for authors and reviewers. Radiol Artif Intell 2(2):e200029

    Article  PubMed  Google Scholar 

  44. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

    Article  PubMed  Google Scholar 

  45. Tzutalin. LabelImg. Git code (2015). https://github.com/tzutalin/labelImg

  46. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  47. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis 115:211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  Google Scholar 

  48. Lee JM, Shin SC, Cho JW, Choi YH, Moon YM, Jung SJ, Kwon JH (2014) The Evaluation for Oral Examination by Using ofIntra-Oral Camera International journal of clinical preventive dentistry. Int J Clin Dent 10(2):113–120

    Article  Google Scholar 

  49. Mohammad-Rahimi H, Motamedian SR, Rohban MH, Krois J, Uribe SE, Mahmoudinia E, Rokhshad R, Nadimi M, Schwendicke F (2022) Deep learning for caries detection: A systematic review. J Dent 122:104115. https://doi.org/10.1016/j.jdent.2022.104115

    Article  PubMed  Google Scholar 

  50. Dayo AF, Wolff MS, Syed AZ, Mupparapu M (2021) Radiology of Dental Caries. Dental clinics of North America 65(3):427–445

    Article  PubMed  Google Scholar 

Download references

Funding

This study was partially funded by the CAPES – Brazilian Federal Agency for Support and Evaluation of Graduate Education – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Portella PD: Conceptualization, Methodology, Validation, Formal Analysis, Investigation, Resources, Data Curation, Writing - Original Draft. de Oliveira LF: Conceptualization, Methodology, Software, Formal Analysis, Writing - Review & Editing, Supervision. Ferreira MFC: Software, Formal Analysis. Dias BC: Investigation. de Souza JF: Investigation, Writing - Review & Editing. Assunção LRDS: Term, Conceptualization, Methodology, Validation, Formal Analysis, Investigation, Resources, Writing - Review & Editing, Project administration.

Corresponding author

Correspondence to Paula Dresch Portella.

Ethics declarations

Ethics approval

The study protocol was approved by the Human Research Ethics Committee of the Division of Health Sciences of the Universidade Federal do Paraná (UFPR) (CAAE 25001219.5.0000.0102).

Consent to participate

The consent form was signed by all participants (examiners) in the CNN testing phase.

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portella, P.D., de Oliveira, L.F., Ferreira, M.F. et al. Improving accuracy of early dental carious lesions detection using deep learning-based automated method. Clin Oral Invest 27, 7663–7670 (2023). https://doi.org/10.1007/s00784-023-05355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05355-x

Keywords

Navigation