Skip to main content

Advertisement

Log in

Comparative chemical properties, bioactivity, and cytotoxicity of resin-modified calcium silicate–based pulp capping materials on human dental pulp stem cells

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract 

Objectives

This study investigated the cytotoxicity, the residual monomer release, degree of conversion (DC), calcium ion (Ca2+) release, and crystal structure of TheraCal PT (ThPT) by comparison with TheraCal LC (ThLC) and mineral trioxide aggregate (MTA).

Materials and methods

The cytotoxicity of the cured materials was evaluated on human dental pulp stem cells (hDPSCs) isolated from third molars by the water-soluble tetrazolium salt (WST-1) method. The monomer release and DC of the resin-containing materials were analyzed by high-performance liquid chromatography (HPLC) and Fourier transform infrared (FTIR), respectively. The chemical composition and Ca2+ release of the materials were determined by scanning electronic microscopy–energy-dispersive spectroscopy (SEM–EDS), X-ray diffractometry (XRD), and inductively coupled plasma-optical emission spectroscopy (ICP-OES), respectively. Statistical differences were evaluated with one-way ANOVA, repeated measure ANOVA, and the Tukey test (p < 0.05).

Results

MTA showed significantly lower cytotoxicity than either ThLC or ThPT after 1, 3, and 7 days (p < 0.05). TEGDMA release of ThPT is significantly higher than ThLC (p < 0.05). All materials showed calcium Ca2+ release, with MTA significantly higher than the others (p < 0.05).

Conclusions

MTA showed low cytotoxicity and high Ca2+ release compared to ThLC and ThPT.

Clinical relevance.

The cytotoxicity and residual monomer release of ThLC and ThPT may raise concerns about the viability of hDPSCs. Further investigations with the use of in vivo research models are required to validate in vitro bioactivity properties and the potential adverse biological effects of ThLC and ThPT on hDPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References 

  1. Chan C, Lan W, Chang M, Chen Y, Lan W, Chang H, Jeng J (2005) Effects of TGF-βs on the growth, collagen synthesis and collagen lattice contraction of human dental pulp fibroblasts in vitro. Arch Oral Biol 50:469–479. https://doi.org/10.1016/j.archoralbio.2004.10.005

    Article  PubMed  Google Scholar 

  2. Huang G-J, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806. https://doi.org/10.1177/0022034509340867

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rosa V, Zhang Z, Grande R, Nör J (2013) Dental pulp tissue engineering in full-length human root canals. J Dent Res 92:970–975. https://doi.org/10.1177/0022034513505772

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tatullo M, Codispoti B, Sied J, Makeeva I, Paduano F, Marrelli M, Spagnuolo G (2019) Stem cells-based and molecular-based approaches in regenerative dentistry: a topical review. Curr Stem Cell Res Ther 14:607–616. https://doi.org/10.2174/1574888X14666190626111154

    Article  PubMed  Google Scholar 

  5. Kim J-H, Kim S-Y, Woo S-M, Jeong H-N, Jung J-Y, Kim S-M, Lim H-S (2019) Combination of mineral trioxide aggregate and propolis promotes odontoblastic differentiation of human dental pulp stem cells through ERK signaling pathway. Food Science and Biotechnology 28:1801–1809. https://doi.org/10.1007/s10068-019-00609-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Maria de Lourdes RA, Holland R, Reis A, Bortoluzzi MC, Murata SS, Dezan E Jr, Souza V, Alessandro LD (2008) Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. J Endod 34:1–6. https://doi.org/10.1016/j.joen.2007.09.012

    Article  Google Scholar 

  7. Camargo S, Camargo C, Hiller KA, Rode S, Schweikl H, Schmalz G (2009) Cytotoxicity and genotoxicity of pulp capping materials in two cell lines. Int Endod J 42:227–237. https://doi.org/10.1111/j.1365-2591.2008.01506.x

    Article  PubMed  Google Scholar 

  8. Takita T, Hayashi M, Takeichi O, Ogiso B, Suzuki N, Otsuka K, Ito K (2006) Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int Endod J 39:415–422. https://doi.org/10.1111/j.1365-2591.2008.01506.x

    Article  PubMed  Google Scholar 

  9. Collado-González M, García-Bernal D, Oñate-Sánchez R, Ortolani-Seltenerich P, Álvarez-Muro T, Lozano A, Forner L, Llena C, Moraleda J, Rodríguez-Lozano F (2017) Cytotoxicity and bioactivity of various pulpotomy materials on stem cells from human exfoliated primary teeth. Int Endod J 50:19–30. https://doi.org/10.1111/iej.12751

    Article  Google Scholar 

  10. Da Rosa W, Piva E, Da Silva A (2018) Disclosing the physiology of pulp tissue for vital pulp therapy. Int Endod J 51:829–846. https://doi.org/10.1111/iej.12906

    Article  PubMed  Google Scholar 

  11. Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, Visai L (2014) Cytocompatibility and antibacterial properties of capping materials. Scientific World Journal 2014:1–10. https://doi.org/10.1155/2014/181945

    Article  Google Scholar 

  12. Sawicki L, Pameijer CH, Emerich K, Adamowicz-Klepalska B (2008) Histological evaluation of mineral trioxide aggregate and calcium hydroxide in direct pulp capping of human immature permanent teeth. Am J Dent 21:262–266

    PubMed  Google Scholar 

  13. Moghaddame-Jafari S, Mantellini MG, Botero TM, McDonald NJ, Nör JE (2005) Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J Endod 31:387–391. https://doi.org/10.1097/01.don.0000145423.89539.d7

    Article  PubMed  Google Scholar 

  14. Roberts HW, Toth JM, Berzins DW, Charlton DG (2008) Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater 24:149–164. https://doi.org/10.1016/j.dental.2007.04.007

    Article  PubMed  Google Scholar 

  15. Yoldaş SE, Bani M, Atabek D, Bodur H (2016) Comparison of the potential discoloration effect of bioaggregate, biodentine, and white mineral trioxide aggregate on bovine teeth: in vitro research. J Endod 42:1815–1818. https://doi.org/10.1016/j.joen.2016.08.020

    Article  PubMed  Google Scholar 

  16. Ajami AA, Navimipour EJ, Oskoe SS, Kahnamoui MA, Lotfi M, Daneshpooy M (2013) Comparison of shear bond strength of resin-modified glass ionomer and composite resin to three pulp capping agents. J Dent Res Dent Clin Dent Prospects 7(3):164. https://doi.org/10.5681/joddd.2013.026

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A (2014) The physical characteristics of resin composite–calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater 30(3):343–349. https://doi.org/10.1016/j.dental.2013.12.010

    Article  PubMed  Google Scholar 

  18. Nielsen MJ, Casey JA, VanderWeele RA, Vandewalle KS (2016) Mechanical properties of new dental pulp-capping materials. Gen Dent 64(1):44–48

    PubMed  Google Scholar 

  19. Kim Y, Lee D, Kim HM, Kye M, Kim SY (2021) Biological characteristics and odontogenic differentiation effects of calcium silicate-based pulp capping materials. Materials 14(16):4661. https://doi.org/10.3390/ma14164661

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rodríguez-Lozano FJ, López-García S, Garcia-Bernal D, Sanz J, Lozano A, Pecci-Lloret M, Melo M, López-Ginés C, Forner L (2021) Cytocompatibility and bioactive properties of the new dual-curing resin-modified calcium silicate-based material for vital pulp therapy. Clin Oral Investig 25:5009–5024. https://doi.org/10.1007/s00784-021-03811-0

    Article  PubMed  Google Scholar 

  21. Sanz JL, Soler-Doria A, López-García S, García-Bernal D, Rodríguez-Lozano FJ, Lozano A, Llena C, Forner L, Guerrero-Gironés J, Melo M (2021) Comparative biological properties and mineralization potential of 3 endodontic materials for vital pulp therapy: Theracal PT, Theracal LC, and Biodentine on human dental pulp stem cells. J Endod 47:1896–1906. https://doi.org/10.1016/j.joen.2021.08.001

    Article  PubMed  Google Scholar 

  22. Jeanneau C, Laurent P, Rombouts C, Giraud T, About I (2017) Light-cured tricalcium silicate toxicity to the dental pulp. J Endod 43(12):2074–2080. https://doi.org/10.1016/j.joen.2017.07.010

    Article  PubMed  Google Scholar 

  23. Arias-Moliz FC, Lung CYK, Wismayer PS, Camilleri J (2017) Antimicrobial and biological activity of leachate from light curable pulp capping materials. J Dent 64:45–51. https://doi.org/10.1016/j.jdent.2017.06.006

    Article  PubMed  Google Scholar 

  24. Chen L, Suh BI (2017) Cytotoxicity and biocompatibility of resin-free and resin-modified direct pulp capping materials: a state-of-the-art review. Dent Mater J 36(1):1–7. https://doi.org/10.4012/dmj.2016-107

    Article  PubMed  Google Scholar 

  25. Klein-Júnior CA, Zimmer R, Hentschke GS, Machado DC, Santos RBD, Reston EG (2018) Effect of heat treatment on cytotoxicity of self-adhesive resin cements: cell viability analysis. Eur J Dent 12(02):281–286. https://doi.org/10.4103/ejd.ejd_34_18

    Article  PubMed  PubMed Central  Google Scholar 

  26. Klein-Junior CA, Zimmer R, Borghetti DLB, Portell FF, Abich FC, Marinowic DR, Hosaka K, Reston EG (2020) Hot air stream reduces cytotoxicity of light-cured calcium hydroxide based cements. J Clin Exp Dent 12(3):e215. https://doi.org/10.4317/jced.56590

    Article  PubMed  PubMed Central  Google Scholar 

  27. Leite MLdA, Costa CAdS, Duarte RM, Andrade AKMd, Soares DG (2018) Bond strength and cytotoxicity of a universal adhesive according to the hybridization strategies to dentin. Braz Dent J 29:68–75. https://doi.org/10.1590/0103-6440201801698

    Article  PubMed  Google Scholar 

  28. Salehi S, Gwinner F, Mitchell JC, Pfeifer C (2015) Ferracane JL (2015) Cytotoxicity of resin composites containing bioactive glass fillers. Dent Mater 31(2):195–203. https://doi.org/10.1016/j.dental.2014.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  29. Karaöz E, Doğan BN, Aksoy A, Gacar G, Akyüz S, Ayhan S, Genç ZS, Yürüker S, Duruksu G, Demircan PÇ (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133:95–112. https://doi.org/10.1007/s00418-009-0646-5

    Article  PubMed  Google Scholar 

  30. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  PubMed  Google Scholar 

  31. Rodríguez-Lozano F, Collado-González M, Tomás-Catalá C, García-Bernal D, López S, Onate-Sanchez R, Moraleda J, Murcia L (2019) GuttaFlow Bioseal promotes spontaneous differentiation of human periodontal ligament stem cells into cementoblast-like cells. Dent Mater 35:114–124. https://doi.org/10.1016/j.dental.2018.11.003

    Article  PubMed  Google Scholar 

  32. Rueggeberg F, Hashinger D, Fairhurst C (1990) Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent Mater 6:241–249. https://doi.org/10.1016/S0109-5641(05)80005-3

    Article  PubMed  Google Scholar 

  33. Lee B-N, Lee K-N, Koh J-T, Min K-S, Chang H-S, Hwang I-N, Hwang Y-C, Oh W-M (2014) Effects of 3 endodontic bioactive cements on osteogenic differentiation in mesenchymal stem cells. J Endod 40:1217–1222. https://doi.org/10.1016/j.joen.2014.01.036

    Article  PubMed  Google Scholar 

  34. Buttke TM, McCubrey JA, Owen TC (1993) Use of an aqueous soluble tetrazolium/formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods 157:233–240. https://doi.org/10.1016/0022-1759(93)90092-L

    Article  PubMed  Google Scholar 

  35. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K (1996) A combined assay of cell vability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19:1518–1520. https://doi.org/10.1248/bpb.19.1518

    Article  PubMed  Google Scholar 

  36. Ishiyama M, Shiga M, Sasamoto K, Mizoguchi M, P-g HE (1993) A new sulfonated tetrazolium salt that produces a highly water-soluble formazan dye. Chem Pharm Bull 41:1118–1122. https://doi.org/10.1248/cpb.41.1118

    Article  Google Scholar 

  37. Nam OH, Kim J-H, Choi SC, Kim Y (2020) Time-dependent response of human deciduous tooth-derived dental pulp cells treated with TheraCal LC: functional analysis of gene interactions compared to MTA. J Clin Med 9:531. https://doi.org/10.3390/jcm9020531

    Article  PubMed Central  Google Scholar 

  38. Bortoluzzi EA, Niu L-n, Palani CD, El-Awady AR, Hammond BD, Pei D-d, Tian F-c, Cutler CW, Pashley DH, Tay FR (2015) Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization. Dent Mater 31:1510–1522. https://doi.org/10.1016/j.dental.2015.09.020

    Article  PubMed  PubMed Central  Google Scholar 

  39. Łagocka R, Jakubowska K, Chlubek D, Buczkowska-Radlińska J (2015) Elution study of unreacted TEGDMA from bulk-fill composite (SDR™ Dentsply) using HPLC. Adv Med Sci 60(2):191–198. https://doi.org/10.1016/j.advms.2015.02.003

    Article  PubMed  Google Scholar 

  40. Schneider TR, Hakami-Tafreshi R, Tomasino-Perez A, Tayebi L, Lobner D (2019) Effects of dental composite resin monomers on dental pulp cells. Dent Mater J 2018-163. https://doi.org/10.4012/dmj.2018-163

  41. Nilsen BW, Jensen E, Örtengren U, Michelsen VB (2017) Analysis of organic components in resin-modified pulp capping materials: critical considerations. Eur J Oral Sci 125:183–194. https://doi.org/10.1111/eos.12347

    Article  PubMed  Google Scholar 

  42. Di Foggia M, Prati C, Gandolfi MG, Taddei P (2019) Spectroscopic and morphological data assessing the apatite forming ability of calcium hydroxide-releasing materials for pulp capping. Data Brief 23:103719. https://doi.org/10.1016/j.dib.2019.103719

    Article  PubMed  PubMed Central  Google Scholar 

  43. Suh B, Yin R, Cannon M, Martin DE, Polymerizable dental pulp healing, capping, and lining material and method for use. 2008, Google Patents.

  44. Geurtsen W (2000) Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med 11:333–355. https://doi.org/10.1177/10454411000110030401

    Article  PubMed  Google Scholar 

  45. Issa Y, Watts D, Brunton P, Waters C, Duxbury A (2004) Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 20:12–20. https://doi.org/10.1016/S0109-5641(03)00053-8

    Article  PubMed  Google Scholar 

  46. Janani K, Teja KV, Sandhya R, Alam MK, Al-Qaisi RK, Shrivastava D, Alnusayri MO, Alkhalaf ZA, Sghaireen MG, Srivastava KC (2021) Monomer elution from three resin composites at two different time interval using high performance liquid chromatography—an in-vitro study. Polymers 13(24):4395. https://doi.org/10.3390/polym13244395

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gul P, Miloglu FD, Akgul N (2014) HPLC analysis of eluted monomers from dental composite using different immersion media. J Liq Chromatogr Relat Technol 37(2):155–170. https://doi.org/10.1080/10826076.2012.738619

    Article  Google Scholar 

  48. Väkiparta M, Puska M, Vallittu PK (2006) Residual monomers and degree of conversion of partially bioresorbable fiber-reinforced composite. Acta Biomater 2(1):29–37. https://doi.org/10.1016/j.actbio.2005.08.009

    Article  PubMed  Google Scholar 

  49. Moharamzadeh K, Noort RV, Brook IM, Scutt AM (2007) HPLC analysis of components released from dental composites with different resin compositions using different extraction media. J Mater Sci Mater Med 18(1):133–137. https://doi.org/10.1007/s10856-006-0671-z

    Article  PubMed  Google Scholar 

  50. Goldberg M (2008) In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig 12(1):1–8. https://doi.org/10.1007/s00784-007-0162-8

    Article  PubMed  Google Scholar 

  51. Ferracane J (1994) (1994) Elution of leachable components from composites. J Oral Rehabil 21(4):441–452. https://doi.org/10.1111/j.1365-2842.1994.tb01158.x

    Article  PubMed  Google Scholar 

  52. Munksgaard EC, Peutzfeldt A, Asmussen E (2000) (2000) Elution of TEGDMA and BisGMA from a resin and a resin composite cured with halogen or plasma light. Eur J Oral Sci 108(4):341–345. https://doi.org/10.1034/j.1600-0722.2000.108004341.x

    Article  PubMed  Google Scholar 

  53. Imazato S, McCabe JF, Tarumi H, Ehara A, Ebisu S (2001) Degree of conversion of composites measured by DTA and FTIR. Dent Mater 17(2):178–183. https://doi.org/10.1016/s0109-5641(00)00066-x

    Article  PubMed  Google Scholar 

  54. Stansbury J, Dickens SH (2001) Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent Mater 17(1):71–79. https://doi.org/10.1016/s0109-5641(00)00062-2

    Article  PubMed  Google Scholar 

  55. Lempel E, Czibulya Z, Kunsági-Máté S, Szalma J, Sümegi B, Böddi K (2014) Quantification of conversion degree and monomer elution from dental composite using HPLC and micro-Raman spectroscopy. Chromatographia 77(17):1137–1144. https://doi.org/10.1007/s10337-014-2647-3

    Article  Google Scholar 

  56. Nocca G, Iori A, Rossini C, Martorana GE, Ciasca G, Arcovito A, Cordaro M, Lupi A, Marigo L (2015) Effects of barriers on chemical and biological properties of two dual resin cements. Eur J Oral Sci 123:208–214. https://doi.org/10.1111/eos.12178

    Article  PubMed  Google Scholar 

  57. Miletic V, Santini A, Trkulja I (2009) Quantification of monomer elution and carbon–carbon double bonds in dental adhesive systems using HPLC and micro-Raman spectroscopy. J Dent 37:177–184. https://doi.org/10.1016/j.jdent.2008.11.006

    Article  PubMed  Google Scholar 

  58. Pongprueksa P, De Munck J, Duca RC, Poels K, Covaci A, Hoet P, Godderis L, Van Meerbeek B, Van Landuyt KL (2015) Monomer elution in relation to degree of conversion for different types of composite. J Dent 43:1448–1455. https://doi.org/10.1016/j.jdent.2015.10.013

    Article  PubMed  Google Scholar 

  59. Manaspon C, Jongwannasiri C, Chumprasert S, Sa-Ard-Iam N, Mahanonda R, Pavasant P, Porntaveetus T, Osathanon T (2021) Human dental pulp stem cell responses to different dental pulp capping materials. BMC Oral Health 21:1–13. https://doi.org/10.1186/s12903-021-01544-w

    Article  Google Scholar 

  60. Lopez-Cazaux S, Bluteau G, Magne D, Lieubeau-Teillet B, Guicheux J, Alliot-Licht B (2006) Culture medium modulates the behaviour of human dental pulp-derived cells. eClls and Mater J 11:35–42

    Google Scholar 

  61. Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C (2015) Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater 13:43–60. https://doi.org/10.5301/jabfm.5000201

    Article  PubMed  Google Scholar 

  62. Elbanna A, Atta D, Sherief DI (2022) In vitro bioactivity of newly introduced dual-cured resin-modified calcium silicate cement. Dent Res J 19. https://doi.org/10.4103/1735-3327.33668

  63. Camilleri J (2014) Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent Mater 30:709–715. https://doi.org/10.1016/j.dental.2014.03.012

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ahmet Öztürk and Kocaeli University, Stem Cell and Gene Therapies Research, and Application Center (KÖGEM) for the support of this study.

Funding

This research was supported by the Scientific Research Projects of Cukurova University (project number TSA-2022–14441).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: C.K, S.N.K., and S.G.B.; methodology: C.K, S.N.K., and S.G.B.; formal analysis and investigation: S.N.K. and S.G.B.; writing—original draft preparation: C.K, S.N.K., and S.G.B.; writing—review and editing: S.N.K. and C.K.; funding acquisition: S.N.K.; resources: C.K, S.N.K., and S.G.B; supervision: S.N.K. and C.K.

Corresponding author

Correspondence to Cihan Küden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All methods performed in the present study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later modifications or comparable ethical standards. The present study and the protocol were found medically appropriate with the ethics committee report numbered 2021/117.65 of Cukurova University Faculty of Medicine Clinical Research Ethics Committee.

Consent to participate

The written informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küden, C., Karakaş, S.N. & Batmaz, S.G. Comparative chemical properties, bioactivity, and cytotoxicity of resin-modified calcium silicate–based pulp capping materials on human dental pulp stem cells. Clin Oral Invest 26, 6839–6853 (2022). https://doi.org/10.1007/s00784-022-04713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04713-5

Keywords

Navigation