Skip to main content

Advertisement

Log in

Analysis of biological and structural factors implicated in the clinical success of orthodontic miniscrews at posterior maxillary interradicular sites

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

This study aims to evaluate success factors implicated in clinical orthodontic miniscrew stability after their interradicular placement in maxilla.

Materials and methods

Six hundred seventy-six miniscrews were inserted in maxillary interradicular sites in a sample of 276 patients (109 males and 167 females; mean age 19 ± 1.7 years) and immediately loaded. Percentage failure rate was recorded, and the influence of the following factors was investigated: structural (miniscrew length, diameter and body shape), operative (side of insertion site, pilot hole drilling or not) and biological (maximal insertion torque [MIT] and type of gingiva). A chi-square test with Monte Carlo correction was performed to detect the influence of these variables on the failure rate of orthodontic miniscrews. Then both multivariate logistic regression and post hoc analysis were performed, followed by classification and regression tree (CART) analysis.

Results

The average success rate was 88%. The principal factors implicated in the failure rate were miniscrew length, MIT values and type of gingiva. Specifically, 8 mm miniscrew length, alveolar mucosa and 5–10 Ncm MIT values were linked to higher failure rates. According to CART, the main variable influencing failure is miniscrew length (≤ 8 mm for higher failure rates). For others, MIT values of 5–10 Ncm are linked to higher failure rates (p < 0.05).

Conclusion

Orthodontic miniscrews inserted in the maxilla display good success rates. However, clinicians should be discouraged from using miniscrews of length ≤ 8 mm and MIT values < 10 Ncm, even with longer miniscrews.

Clinical relevance

Information about factors related to failure rate of miniscrews placed at posterior maxillary interradicular sites is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MIT:

Maximum insertion torque

TADs:

Temporary anchorage devices

CBCT:

Cone-beam computed tomography

References

  1. Papadopoulos MA, Tarawneh F (2007) The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103(5):e6-15. https://doi.org/10.1016/j.tripleo.2006.11.022.10.1016j.tripleo.2006.11.022

    Article  PubMed  Google Scholar 

  2. Keim RG, Gottlieb EL, Vogels DS 3rd, Vogels P (2014) JCO study of orthodontic diagnosis and treatment procedures, Part 1: results and trends. J Clin Orthod 48(10):607–630

    PubMed  Google Scholar 

  3. Alharbi F, Almuzian M, Bearn D (2018) Miniscrews failure rate in orthodontics: systematic review and meta-analysis. Eur J Orthod 40(5):519–530. https://doi.org/10.1093/ejo/cjx093

    Article  PubMed  Google Scholar 

  4. Crismani AG, Bertl MH, Celar AG, Bantleon HP, Burstone CJ (2010) Miniscrews in orthodontic treatment: review and analysis of published clinical trials. Am J Orthod Dentofacial Orthop 137(1):108–113. https://doi.org/10.1016/j.ajodo.2008.01.027

    Article  PubMed  Google Scholar 

  5. Uesugi S, Kokai S, Kanno Z, Ono T (2017) Prognosis of primary and secondary insertions of orthodontic miniscrews: what we have learned from 500 implants. Am J Orthod Dentofacial Orthop 152(2):224–231. https://doi.org/10.1016/j.ajodo.2016.12.021

    Article  PubMed  Google Scholar 

  6. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T (2003) Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 124(4):373–378. https://doi.org/10.1016/s0889-5406(03)00565-1

    Article  PubMed  Google Scholar 

  7. Chang C, Liu SS, Roberts WE (2015) Primary failure rate for 1680 extra-alveolar mandibular buccal shelf mini-screws placed in movable mucosa or attached gingiva. Angle Orthod 85(6):905–910. https://doi.org/10.2319/092714.695.1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen YJ, Chang HH, Huang CY, Hung HC, Lai EH, Yao CC (2007) A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin Oral Implants Res 18(6):768–775. https://doi.org/10.1111/j.1600-0501.2007.01405.x

    Article  PubMed  Google Scholar 

  9. Papageorgiou SN, Zogakis IP, Papadopoulos MA (2012) Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofacial Orthop 142(5):577-595.e7. https://doi.org/10.1016/j.ajodo.2012.05.016

    Article  PubMed  Google Scholar 

  10. Marquezan M, Mattos CT, Sant’Anna EF, de Souza MM, Maia LC (2014) Does cortical thickness influence the primary stability of miniscrews? A systematic review and meta-analysis. Angle Orthod 84:1093–1103. https://doi.org/10.2319/093013-716.1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ardani IGAW, Indharmawan R, Hamid T (2019) The effect of miniscrew length and bone density on anchorage resistance: an in vitro study. Int Orthod 17(3):446–450. https://doi.org/10.1016/j.ortho.2019.06.004

    Article  PubMed  Google Scholar 

  12. Antoszewaska J, Papadopoulos MA, Park HS, Ludwig B (2009) Five-year experience with orthodontic miniscrew implants: a retrospective investigation of factors influencing success rates. Am J Orthod Dentofacial Orthop 136:158.e1-158.e10. https://doi.org/10.1016/j.ajodo.2009.03.031

    Article  Google Scholar 

  13. Bayat E, Bauss O. Effect of smoking on the failure rates of orthodontic miniscrews (2010) J Orofac Orthop 71(2):117-24. English, German. https://doi.org/10.1007/s00056-010-9936-8

  14. Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T (2007) Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop 131(1):9–15. https://doi.org/10.1016/j.ajodo.2005.02.032

    Article  PubMed  Google Scholar 

  15. Migliorati M, Drago S, Gallo F, Amorfini L, Dalessandri D, Calzolari C, Benedicenti S, Silvestrini-Biavati A (2016) Immediate versus delayed loading: comparison of primary stability loss after miniscrew placement in orthodontic patients-a single-centre blinded randomized clinical trial. Eur J Orthod 38(6):652–659. https://doi.org/10.1093/ejo/cjv095

    Article  PubMed  Google Scholar 

  16. Sarul M, Minch L, Park HS, Antoszewska-Smith J (2015) Effect of the length of orthodontic mini-screw implants on their long-term stability: a prospective study. Angle Orthod 85(1):33–38. https://doi.org/10.2319/112113-857.1

    Article  PubMed  Google Scholar 

  17. Radwan ES, Montasser MA, Maher A (2018) Influence of geometric design characteristics on primary stability of orthodontic miniscrews. J Orofac Orthop 79(3):191–203. https://doi.org/10.1007/s00056-018-0131-7

    Article  PubMed  Google Scholar 

  18. Gracco A, Giagnorio C, Incerti Parenti S, Alessandri Bonetti G, Siciliani G (2012) Effects of thread shape on the pullout strength of miniscrews. Am J Orthod Dentofacial Orthop 142(2):186–190. https://doi.org/10.1016/j.ajodo.2012.03.023

    Article  PubMed  Google Scholar 

  19. Migliorati M, Drago S, Schiavetti I, Olivero F, Barberis F, Lagazzo A, Capurro M, Silvestrini-Biavati A, Benedicenti S (2015) Orthodontic miniscrews: an experimental campaign on primary stability and bone properties. Eur J Orthod 37(5):531–538. https://doi.org/10.1093/ejo/cju081

    Article  PubMed  Google Scholar 

  20. Park HS, Jeong SH, Kwon OW (2006) Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 130(1):18–25. https://doi.org/10.1016/j.ajodo.2004.11.032

    Article  PubMed  Google Scholar 

  21. Wilmes B, Su YY, Drescher D (2008) Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod 78(6):1065–1070. https://doi.org/10.2319/100707-484.1

    Article  PubMed  Google Scholar 

  22. Haddad R, Saadeh M (2019) Distance to alveolar crestal bone: a critical factor in the success of orthodontic mini-implants. Prog Orthod 20(1):19. https://doi.org/10.1186/s40510-019-0273-1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carney LO, Campbell PM, Spears R, Ceen RF, Melo AC, Buschang PH (2014) Effects of pilot holes on longitudinal miniscrew stability and bony adaptation. Am J Orthod Dentofacial Orthop 146(5):554–564. https://doi.org/10.1016/j.ajodo.2014.07.017

    Article  PubMed  Google Scholar 

  24. Heidemann W, Gerlach KL, Gröbel KH, Köllner HG (1998) Influence of different pilot hole sizes on torque measurements and pullout analysis of osteosynthesis screws. J Craniomaxillofac Surg 26(1):50–55. https://doi.org/10.1016/s1010-5182(98)80035-8

    Article  PubMed  Google Scholar 

  25. Kim JS, Choi SH, Cha SK, Kim JH, Lee HJ, Yeom SS, Hwang CJ (2012) Comparison of success rates of orthodontic mini-screws by the insertion method. Korean J Orthod 42(5):242–248. https://doi.org/10.4041/kjod.2012.42.5.242

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nakagaki S, Iijima M, Handa K, Koike T, Yasuda Y, Saito T, Mizoguchi I (2014) Micro-CT and histologic analyses of bone surrounding immediately loaded miniscrew implants: comparing compression and tension loading. Dent Mater J 33(2):196–202. https://doi.org/10.4012/dmj.2013-223

    Article  PubMed  Google Scholar 

  27. Mohammed H, Wafaie K, Rizk MZ, Almuzian M, Sosly R, Bearn DR (2018) Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: a systematic review and meta-analysis. Prog Orthod 19(1):36. https://doi.org/10.1186/s40510-018-0225-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Motoyoshi M, Yoshida T, Ono A, Shimizu N (2007) Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants 22(5):779–784

    PubMed  Google Scholar 

  29. Marchi A, Camporesi M, Festa M, Salvatierra L, Izadi S, Farronato G (2020) Drilling capability of orthodontic miniscrews: in vitro study. Dent J (Basel) 8(4):138. https://doi.org/10.3390/dj8040138

    Article  Google Scholar 

  30. Ahmed M, Shaikh A, Fida M (2016) Diagnostic performance of various cephalometric parameters for the assessment of vertical growth pattern. Dental Press J Orthod 21(4):41–49. https://doi.org/10.1590/2177-6709.21.4.041-049.oar

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin JT, Lane JM (2004) Osteoporosis: a review. Clin Orthop Relat Res (425):126–34

  32. Melsen B, Graham J, Baccetti T, Koga M, Boyd R, Park J, Tracey S, Uribe F, Park HS, Cacciafesta V, Haeger RS, Bowman SJ, Kook YA, Redmond WR, Björn L, Lisson JA (2010) Factors contributing to the success or failure of skeletal anchorage devices: an informal JCO survey. J Clin Orthod 44(12):714–8; quiz 743.

  33. Al-Jamal MFJ, Al-Jumaily HA (2021) Can the bone density estimated by CBCT predict the primary stability of dental implants? A new measurement protocol. J Craniofac Surg 32(2):e171–e174. https://doi.org/10.1097/SCS.0000000000006991

    Article  PubMed  Google Scholar 

  34. Moon CH, Lee DG, Lee HS, Im JS, Baek SH (2008) Factors associated with success rate of orthodontic miniscrews placed in the upper and lower posterior buccal region. Angle Orthod 78(1):101–106. https://doi.org/10.2319/121706-515.1

    Article  PubMed  Google Scholar 

  35. Lim HJ, Choi YJ, Evans CA, Hwang HS (2011) Predictors of initial stability of orthodontic miniscrew implants. Eur J Orthod 33(5):528–532. https://doi.org/10.1093/ejo/cjq122

    Article  PubMed  Google Scholar 

  36. Brettin BT, Grosland NM, Qian F, Southard KA, Stuntz TD, Morgan TA, Marshall SD, Southard TE (2008) Bicortical vs monocortical orthodontic skeletal anchorage. Am J Orthod Dentofacial Orthop 134(5):625–635. https://doi.org/10.1016/j.ajodo.2007.01.031

    Article  PubMed  Google Scholar 

  37. Migliorati M, Benedicenti S, Signori A, Drago S, Barberis F, Tournier H, Silvestrini-Biavati A (2012) Miniscrew design and bone characteristics: an experimental study of primary stability. Am J Orthod Dentofacial Orthop 142(2):228–234. https://doi.org/10.1016/j.ajodo.2012.03.029

    Article  PubMed  Google Scholar 

  38. Viwattanatipa N, Thanakitcharu S, Uttraravichien A, Pitiphat W (2009) Survival analyses of surgical miniscrews as orthodontic anchorage. Am J Orthod Dentofacial Orthop 136(1):29–36. https://doi.org/10.1016/j.ajodo.2007.06.018

    Article  PubMed  Google Scholar 

  39. Chaddad K, Ferreira AF, Geurs N, Reddy MS (2008) Influence of surface characteristics on survival rates of mini-implants. Angle Orthod 78(1):107–113. https://doi.org/10.2319/100206-401.1

    Article  PubMed  Google Scholar 

  40. Baek SH, Kim BM, Kyung SH, Lim JK, Kim YH (2008) Success rate and risk factors associated with mini-implants reinstalled in the maxilla. Angle Orthod 78(5):895–901. https://doi.org/10.2319/091207-430.1

    Article  PubMed  Google Scholar 

  41. Veli I, Uysal T, Baysal A, Karadede I (2014) Buccal cortical bone thickness at miniscrew placement sites in patients with different vertical skeletal patterns. J Orofac Orthop 75(6):417–429. https://doi.org/10.1007/s00056-014-0235-7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Palone.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palone, M., Darsiè, A., Maino, G.B. et al. Analysis of biological and structural factors implicated in the clinical success of orthodontic miniscrews at posterior maxillary interradicular sites. Clin Oral Invest 26, 3523–3532 (2022). https://doi.org/10.1007/s00784-021-04321-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04321-9

Keywords

Navigation