Skip to main content

Advertisement

Log in

Effects of different remineralization agents on MIH defects: a randomized clinical study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to present a comparative evaluation of the long-term efficacy of fluoride varnish and pastes containing CPP-ACP and CPP-ACP with fluoride (CPP-ACFP) in the remineralization of creamy-white and yellow-brown defects in permanent first molars with MIH.

Materials and methods

The study included 120 teeth with yellow-brown or creamy-white defects in 67 children (37 girls, 30 boys) aged 6–9 years (mean, 7.2) who were newly diagnosed with MIH with no substance loss or caries or prior restorative treatment. The patients were randomly divided into the experiment groups; control (oral hygiene motivation only), fluoride varnish, and pastes containing CPP-ACP and CPP-ACPF, and followed up for 24 months. The evaluations were made based on the ICDAS criteria and the measurements which were performed using the laser fluorescence method (DIAGNOdent, KaVo, Biberach, Germany) in the follow-ups.

Results

The research was completed with 49 patients (23 females, 26 males; mean age, 7.7) and 90 teeth. All remineralization agents increased remineralization rates in both creamy-white and yellow-brown colored defects without presenting any statistically significant difference at the end of the follow-up period (p > 0.05). However, the effects of fluoride varnishes were late to observe when compared to pastes containing CPP-ACP and CPP-ACPF.

Conclusions

Pastes containing calcium and phosphate may be recommended for the longer-term preservation of teeth with yellow-brown defects which showed a post-eruptive breakdown in a shorter time.

Clinical relevance

There is a lack of studies investigating MIH treatments in which lesion appearance was recorded. This study evaluated creamy-white and yellow-brown MIH defects separately and reported long-term results of different remineralization agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jälevik B (2010) Prevalence and diagnosis of molar-incisor-hypomineralisation (MIH): a systematic review. Eur Arch Paediatr Dent 11:59–64. https://doi.org/10.1007/BF03262714

    Article  PubMed  Google Scholar 

  2. Weerheijm KL, Duggal M, Mejàre I, Papagiannoulis L, Koch G, Martens LC, Hallonsten AL (2003) Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on MIH held in Athens, 2003. Eur Arch Paediatr Dent 4:110–113

    Google Scholar 

  3. Amend S, Nossol C, Bausback-Schomakers S, Wleklinski C, Scheibelhut C, Pons-Kühnemann J, Frankenberger R, Krämer N (2021) Prevalence of molar-incisor-hypomineralisation (MIH) among 6-12-year-old children in Central Hesse (Germany). Clin Oral Investig 25:2093–2100. https://doi.org/10.1007/s00784-020-03519-7

    Article  PubMed  Google Scholar 

  4. Oyedele TA, Folayan MO, Adekoya-Sofowora CA, Oziegbe EO, Esan TA (2015) Prevalence, pattern and severity of molar incisor hypomineralisation in 8- to 10-year-old school children in Ile-Ife, Nigeria. Eur Arch Paediatr Dent 16:277–282. https://doi.org/10.1007/s40368-015-0175-y

    Article  PubMed  Google Scholar 

  5. Koruyucu M, Özel S, Tuna EB (2018) Prevalence and etiology of molar-incisor hypomineralization (MIH) in the city of Istanbul. J Dent Sci 13:318–328. https://doi.org/10.1016/j.jds.2018.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhao D, Dong B, Yu D, Ren Q, Sun Y (2018) The prevalence of molar incisor hypomineralization: evidence from 70 studies. Int J Paediatr Dent 28:170–179. https://doi.org/10.1111/ipd.12323

    Article  PubMed  Google Scholar 

  7. Schwendicke F, Elhenawy K, Reda S, Bekes K, Manton DJ, Krois J (2018) Global burden of molar incisor hypomineralization. J Dent 68:10–18. https://doi.org/10.1016/j.jdent.2017.12.002

    Article  PubMed  Google Scholar 

  8. Fagrell TG, Dietz W, Jalevik B, Noren JG (2010) Chemical, mechanical and morphological properties of hypomineralized enamel of permanent first molars. Acta Odontol Scand 68:215–222. https://doi.org/10.3109/00016351003752395

    Article  PubMed  Google Scholar 

  9. Jälevik B, Klingberg GA (2002) Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int J Paediatr Dent 12:24–32

    PubMed  Google Scholar 

  10. Mejare I, Bergman E, Grindefjord M (2005) Hypomineralized molars and incisors of unknown origin: treatment outcome at age 18 years. Int J Paediatr Dent 15:20–28. https://doi.org/10.1111/j.1365-263X.2005.00599.x

    Article  PubMed  Google Scholar 

  11. William V, Messer LB, Burrow MF (2006) Molar incisor hypomineralization: review and recommendations for clinical management. Pediatr Dent 28:224–232

    PubMed  Google Scholar 

  12. Baroni C, Marchionni S (2011) MIH supplementation strategies: prospective clinical and laboratory trial. J Dent Res 90:371–376. https://doi.org/10.1177/0022034510388036

    Article  PubMed  Google Scholar 

  13. Farah RA, Swain MV, Drummond BK, Cook R, Atieh M (2010) Mineral density of hypomineralised enamel. J Dent 38:50–58. https://doi.org/10.1016/j.jdent.2009.09.002

    Article  PubMed  Google Scholar 

  14. Jälevik B, Noren JG (2000) Enamel hypomineralization of permanent first molars: a morphological study and survey of possible aetiologic factor. Int J Paediatr Dent 10:278–289. https://doi.org/10.1046/j.1365-263x.2000.00210.x

    Article  PubMed  Google Scholar 

  15. Mahoney EK, Rohanizadeh R, Ismail FSM, Kilpatrick NM, Swain MV (2004) Mechanical properties and microstructure of hypomineralized enamel of permanent teeth. Biomaterials 25:5091–5100. https://doi.org/10.1016/j.biomaterials.2004.02.044

    Article  PubMed  Google Scholar 

  16. Xie ZH, Kilpatrick NM, Swain MV, Munroe PR, Hoffman M (2008) Transmission electron microscope characterization of molar incisor hypomineralisation. J Mater Sci Mater Med 19:3187–3192. https://doi.org/10.1007/s10856-008-3441-2

    Article  PubMed  Google Scholar 

  17. Weerheijm KL (2003) Molar incisor hypomineralisation (MIH). Eur J Paediatr Dent 4:114–120

    PubMed  Google Scholar 

  18. Kühnisch J, Kabary L, Malyk Y, Rothmaier K, Metz I, Hickel R, Heinrich J, Manton D, Standl M (2018) Relationship between caries experience and demarcated hypomineralised lesions (including MIH) in the permanent dentition of 15-year-olds. Clin Oral Investig 22:2013–2019. https://doi.org/10.1007/s00784-017-2299-4

    Article  PubMed  Google Scholar 

  19. Fearne J, Anderson P, Davis DG (2004) 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralization. Br Dent J 196:634–638. https://doi.org/10.1038/sj.bdj.4811282

    Article  PubMed  Google Scholar 

  20. Fayle SA (2003) Molar incisor hypomineralisation: restorative management. Eur J Paediatr Dent 4:121–126

    PubMed  Google Scholar 

  21. da Cunha CA, Mata P, Lino CA, Macho V, Areias C, Norton A, Augusto A (2019) Dental hypomineralization treatment: a systematic review. J Esthet Restor Dent 31:26–39. https://doi.org/10.1111/jerd.12420

    Article  Google Scholar 

  22. Bakkal M, Abbasoglu Z, Kargul B (2017) The effect of casein phosphopeptide- amorphous calcium phosphate on molar-incisor hypomineralisation: a pilot study. Oral Health Prev Dent 15:163–167. https://doi.org/10.3290/j.ohpd.a37928

    Article  PubMed  Google Scholar 

  23. Rolim T, da Costa T, Wambier LM, Chibinski AC, Wambier DS, da Silva Assunção LR, de Menezes J, Feltrin-Souza J (2021) Adhesive restoration of molars affected by molar incisor hypomineralization: a randomized clinical trial. Clin Oral Investig 25:1513–1524. https://doi.org/10.1007/s00784-020-03459-2

    Article  PubMed  Google Scholar 

  24. Crombie FA, Cochrane NJ, Manton DJ, Palamara JEA, Reynolds EC (2013) Mineralisation of developmentally hypomineralized human enamel in vitro. Caries Res 47:259–263. https://doi.org/10.1159/000346134

    Article  PubMed  Google Scholar 

  25. Ozgul BM, Saat S, Sonmez H, Oz FT (2013) Clinical evaluation of desensitizing treatment for incisor teeth affected by molar-incisor hypomineralization. J Clin Pediatr Dent 38:101–105

    Article  PubMed  Google Scholar 

  26. Restrepo M, Jeremias F, Santos-Pinto L, Cordeiro RC, Zuanon AC (2016) Effect of fluoride varnish on enamel remineralization in anterior teeth with molar incisor hypomineralization. J Clin Pediatr Dent 40:207–210

    Article  PubMed  Google Scholar 

  27. Pasini M, Giuca MR, Scatena M, Gatto R, Caruso S (2018) Molar incisor hypomineralization treatment with casein phosphopeptide and amorphous calcium phosphate in children. Minerva Stomatol 67:20–25. https://doi.org/10.23736/S0026-4970.17.04086-9

    Article  PubMed  Google Scholar 

  28. Nogueira V, Mendes Soares IP, Fragelli C, Boldieri T, Manton DJ, Bussaneli DG, Cordeiro R (2021) Structural integrity of MIH-affected teeth after treatment with fluoride varnish or resin infiltration: an 18-month randomized clinical trial. J Dent 105:103570. https://doi.org/10.1016/j.jdent.2020.103570

    Article  PubMed  Google Scholar 

  29. Negre-Barber A, Montiel-Company JM, Catalá-Pizarro M, Almerich-Silla JM (2018) Degree of severity of molar incisor hypomineralization and its relation to dental caries. Sci Rep 8:1248. https://doi.org/10.1038/s41598-018-19821-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Farah RA, Drummond BK, Swain MV, Williams S (2008) Relationship between laser fluorescence and enamel hypomineralisation. J Dent 36:915–921. https://doi.org/10.1016/j.jdent.2008.07.012

    Article  PubMed  Google Scholar 

  31. Santos MPA, Maia L (2012) Molar incisor hypomineralization: morphological, aetiological, epidemiological and clinical considerations. In: Contemporary Approach to Dental Caries Ed.: Li MY. 421-446

  32. Bailey DL, Adams GG, Tsao CE, Hyslop A, Escobar K, Manton DJ, Reynolds EC, Morgan MV (2009) Regression of post-orthodontic lesions by a remineralizing cream. J Dent Res 88:1148–1153. https://doi.org/10.1177/0022034509347168

    Article  PubMed  Google Scholar 

  33. Sitthisettapong T, Phantumvanit P, Huebner C, Derouen T (2012) Effect of CPP-ACP paste on dental caries in primary teeth: a randomized trial. J Dent Res 91:847–852. https://doi.org/10.1177/0022034512454296

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vashist R, Indira R, Ramachandran S, Kumar A, Srinivasan MR (2013) Role of casein phosphopeptide amorphous calcium phosphate in remineralization of white spot lesions and inhibition of Streptococcus mutans. J Conserv Dent 16:342–346. https://doi.org/10.4103/0972-0707.114370

    Article  Google Scholar 

  35. Sheehy EC, Brailsford SR, Kidd E, Beighton D, Zoitopoulos L (2001) Comparison between visual examination and a laser fluorescence system for in vivo diagnosis of occlusal caries. Caries Res 35:421–426. https://doi.org/10.1159/000047485

    Article  PubMed  Google Scholar 

  36. Shi XQ, Welander U, Angmar-Mansson B (2000) Occlusal caries detection with KaVo DIAGNOdent and radiography: an in vitro comparison. Caries Res 34:152–158. https://doi.org/10.1159/000016583

    Article  Google Scholar 

  37. Mahoney E, Ismail FS, Kilpatrick N, Swain M (2004) Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. Eur J Oral Sci 112:497–502. https://doi.org/10.1111/j.1600-0722.2004.00162.x

    Article  PubMed  Google Scholar 

  38. Lussi A, Imwinkelried S, Pitts N, Longbottom C, Reich E (1999) Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro. Caries Res 33:261–266. https://doi.org/10.1159/000016527

    Article  PubMed  Google Scholar 

  39. Lussi A, Megert B, Longbottom C, Reich E, Francescut F (2001) Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. Eur J Oral Sci 109:14–19. https://doi.org/10.1034/j.1600-0722.2001.109001014.x

    Article  PubMed  Google Scholar 

  40. Lygidakis NA, Wong F, Jälevik B, Vierrou AM, Alaluusua S, Espelid I (2010) Best clinical practice guidance for clinicians dealing with children presenting with molar incisor hypomineralisation (MIH). An EAPD Policy Document. Eur Arch Paediatr Dent 11:75–81. https://doi.org/10.1007/BF03262716

    Article  PubMed  Google Scholar 

  41. Fragelli C, Souza JF, Bussaneli DG, Jeremias F, Santos-Pinto LD, Cordeiro R (2017) Survival of sealants in molars affected by molar-incisor hypomineralization: 18-month follow-up. Braz Oral Res 31:e30. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0030

    Article  PubMed  Google Scholar 

  42. Heitmuller D, Thiering E, Hoffmann U, Heinrich J, Manton D, Kühnisch J, Neumann C, Bauer CP, Heinrich-Weltzien R, Hickel R (2013) Is there a positive relationship between molar incisor hypomineralisations and the presence of dental caries? Int J Paediatr Dent 23:116–124. https://doi.org/10.1111/j.1365-263X.2012.01233.x

    Article  PubMed  Google Scholar 

  43. Weerheijm KL (2004) Molar incisor hypomineralization (MIH): clinical presentation, aetiology and management. Dent Update 31: 9-12. https://doi.org/10.12968/denu.2004.31.1.9

  44. Neves AB, Americano G, Soares DV, Soviero VM (2019) Breakdown of demarcated opacities related to molar-incisor hypomineralization: a longitudinal study. Clin Oral Investig 23:611–615. https://doi.org/10.1007/s00784-018-2479-x

    Article  PubMed  Google Scholar 

  45. Llena C, Leyda AM, Forner L (2015) CPP-ACP and CPP-ACFP versus fluoride varnish in remineralisation of early carious lesions. A prospective study. Eur J Paediatr Dent 16:181–186

    Article  PubMed  Google Scholar 

  46. Bekes K, Amend S, Priller J, Zamek C, Stamm T, Krämer N (2021) Changes in oral health-related quality of life after treatment of hypersensitive molar incisor hypomineralization-affected molars with a sealing. Clin Oral Investig. https://doi.org/10.1007/s00784-021-03947-z

  47. Grossi JA, Cabral RN, Leal SC (2017) Caries experience in children with and without molar-incisor hypomineralisation: a case-control study. Caries Res 51:419–424. https://doi.org/10.1159/000477099

    Article  PubMed  Google Scholar 

  48. Ulusoy AT, Sen Tunc E, Bayrak S, Onder H (2016) A comparative study of oral health parameters in molar incisor hypomineralization and high-caries-risk children aged 8-11 years. Med Princ Pract 25:85–89. https://doi.org/10.1159/000440999

    Article  PubMed  Google Scholar 

  49. Sonmez H, Yıldırım G, Bezgin T (2013) The prevalence and severity of molar incisor hypomineralization in a group of children living in Ankara, Turkey. Clin Dent Res 37:35–41

    Google Scholar 

  50. Brogardh-Roth S, Matsson L, Klingberg G (2011) Molar incisor hypomineralization and oral hygiene in 10-to-12-yr-old Swedish children born preterm. Eur J Oral Sci 119:33–39. https://doi.org/10.1111/j.1600-0722.2011.00792.x

    Article  PubMed  Google Scholar 

  51. Cho SY, Ki Y, Chu V (2008) Molar incisor hypomineralization in Hong Kong Chinese children. Int J Paediatr Dent 18:348–352. https://doi.org/10.1111/j.1365-263X.2008.00927.x

    Article  PubMed  Google Scholar 

  52. Jeremias F, De Souza JF, Da Costa Silva CM, Cordeiro RCL, Zuanon ACC, Santos-Pinto L (2013) Dental caries experience and molar incisor hypomineralization. Acta Odontol Scand 71:870–876. https://doi.org/10.3109/00016357.2012.734412

    Article  PubMed  Google Scholar 

  53. Ng JJ, Eu OC, Nair R, Hong CH (2015) Prevalence of molar incisor hypomineralization (MIH) in Singaporean children. Int J Paediatr Dent 25:73–78. https://doi.org/10.1111/ipd.12100

    Article  PubMed  Google Scholar 

  54. Lygidakis NA (2010) Treatment modalities in children with teeth affected by molar-incisor enamel hypomineralisation (MIH): a systematic review. Eur Arch Pediatr Dent 11:65–74. https://doi.org/10.1007/BF03262715

    Article  Google Scholar 

  55. Wilmott NS, Bryan RAE, Duggal MS (2008) Molar incisor hypomineralisation: a literature review. Eur Arch Paediatr Dent 9:172–179. https://doi.org/10.1007/BF03262633

    Article  Google Scholar 

  56. ADA (2006) ADA report of the Council on Scientific Affairs: evidence based clinical recommendations: professionally applied topical fluoride. J Am Den. Assoc 137:1151–1159. https://doi.org/10.14219/jada.archive.2006.0356

    Article  Google Scholar 

  57. Chow LC, Takagi S, Carey CM, Sieck BA (2000) Remineralization effects of a two solution fluoride mouthrinse: an in situ study. J Dent Res 79:991–995. https://doi.org/10.1177/00220345000790041601

    Article  PubMed  Google Scholar 

  58. Reynolds EC, Cai F, Cochrane NJ, Shen P, Walker GD, Morgan MV, Reynolds C (2008) Fluoride and casein phosphopeptide-amorphus calcium phosphate. J Dent Res 87:344–348. https://doi.org/10.1177/154405910808700420

    Article  PubMed  Google Scholar 

  59. Cochrane NJ, Saranathan S, Cai F, Cross KJ, Reynolds EC (2008) Enamel subsurface lesion remineralisation with casein phosphopeptide stabilised solutions of calcium, phosphate and fluoride. Caries Res 42:88–97. https://doi.org/10.1159/000113161

    Article  PubMed  Google Scholar 

  60. Alaluusua S (2010) Aetiology of molar-incisor hypomineralisation: a systematic review. Eur Arch Paediatr Dent 11:53–58. https://doi.org/10.1007/BF03262713

    Article  PubMed  Google Scholar 

  61. Chawla N, Messer LB, Silva M (2008) Clinical studies on molar-incisor-hypomineralisation. Part 1: distribution and putative associations. Eur Arch Paediatr Dent 9:180–190. https://doi.org/10.1007/BF03262634

    Article  PubMed  Google Scholar 

  62. Mast P, Tapia MTR, Daeniker L, Krejci I (2013) Understanding MIH: definition, epidemiology, differential diagnosis and new treatment guidelines. Eur J Paediatr Dent 14:204–208

    PubMed  Google Scholar 

  63. Somani C, Taylor GD, Garot E, Rouas P, Lygidakis NA, Wong F (2021) An update of treatment modalities in children and adolescents with teeth affected by molar incisor hypomineralisation (MIH): a systematic review. Eur Arch Paediatr Dent. https://doi.org/10.1007/s40368-021-00635-0

Download references

Funding

The work was supported by the Ankara University Scientific Research Projects Coordination Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugba Bezgin.

Ethics declarations

Ethics approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants and parents included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olgen, I.C., Sonmez, H. & Bezgin, T. Effects of different remineralization agents on MIH defects: a randomized clinical study. Clin Oral Invest 26, 3227–3238 (2022). https://doi.org/10.1007/s00784-021-04305-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04305-9

Keywords

Navigation