Skip to main content

Advertisement

Log in

Expanding the applications of photodynamic therapy—tooth bleaching

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The current tooth bleaching materials are associated with adverse effect. Photodynamic method based on a novel photosensitizer alone, without combining with peroxides, is evaluated for tooth bleaching application.

Materials and methods

Teeth samples were randomly divided into 3 groups with different treatment schemes, including negative control group (group A, physiological saline), experimental group (group B, ZnPc(Lys)5), and the positive control group (group C, hydrogen peroxide). Tooth color, surface microhardness, and roughness were determined at baseline, right after the first and second phase of bleaching, as well as 1 week and 1 month post-bleaching. Four samples in each group was randomly selected to evaluate the changes in surface morphology using the scanning electron microscope.

Results

The color change values (ΔE) in group B (7.10 ± 1.03) and C (12.22 ± 2.35) were significantly higher than that in group A (0.93 ± 0.30, P < 0.05). Additionally, surface microhardness and roughness were significantly affected in group C, but not in the group A and B. Furthermore, the scanning electron microscope images showed no adverse effect of enamel in the group A and B while the group C demonstrated corrosive changes.

Conclusions

ZnPc(Lys)5 had a satisfactory bleaching effect and is promising to be a new type of tooth bleaching agent.

Clinical relevance

The current tooth bleaching materials give a satisfactory clinical outcome and long-term stability, but associated with some adverse reactions. Photosenstizer ZnPc(Lys)5 eliminated the main side effects observed in hydrogen peroxide-based agents on the enamel, and also had a satisfactory bleaching effect and provide a novel selective bleaching scheme for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li Y (2017) Stain removal and whitening by baking soda dentifrice: a review of literature. J Am Dent Assoc 148:S20–S26. https://doi.org/10.1016/j.adaj.2017.09.006

    Article  PubMed  Google Scholar 

  2. Féliz-Matos L, Hernández LM, Abreu N (2015) Dental bleaching techniques; hydrogen-carbamide peroxides and light sources for activation, an update. Mini review article Open Dent J 8:264–268. https://doi.org/10.2174/1874210601408010264

    Article  Google Scholar 

  3. Bersezio C, Estay J, Jorquera G, Peña M, Araya C, Angel P, Fernández E (2019) Effectiveness of dental bleaching with 37.5% and 6% hydrogen peroxide and its effect on quality of life. Oper Dent 44:146–155. https://doi.org/10.2341/17-229-C

    Article  PubMed  Google Scholar 

  4. Sulieman MA (2000) (2008) An overview of tooth-bleaching techniques: chemistry, safety and efficacy. Periodontol 48:148–169. https://doi.org/10.1111/j.1600-0757.2008.00258.x

    Article  Google Scholar 

  5. Haywood VB, Heymann HO (1989) Nightguard vital bleaching. Quintessence Int 20:173–176

    PubMed  Google Scholar 

  6. Farawati FAL, Hsu SM, O’Neill E, Neal D, Clark A, Esquivel-Upshaw J (2019) Effect of carbamide peroxide bleaching on enamel characteristics and susceptibility to further discoloration. J Prosthet Dent 121:340–346. https://doi.org/10.1016/j.prosdent.2018.03.006

    Article  PubMed  Google Scholar 

  7. Ari H, Ungör M (2002) In vitro comparison of different types of sodium perborate used for intracoronal bleaching of discolored teeth. Int Endod J 35:433–436. https://doi.org/10.1046/j.1365-2591.2002.00497.x

    Article  PubMed  Google Scholar 

  8. Joiner A (2006) The bleaching of teeth: a review of the literature. J Dent 34:412–419. https://doi.org/10.1016/j.jdent.2006.02.002

    Article  PubMed  Google Scholar 

  9. Kwon SR, Wertz PW (2015) Review of the mechanism of tooth whitening. J Esthet Restor Dent 27:240–257. https://doi.org/10.1111/jerd.12152

    Article  PubMed  Google Scholar 

  10. da Costa JB, McPharlin R, Paravina RD, Ferracane JL (2010) Comparison of at-home and in-office tooth whitening using a novel shade guide. Oper Dent 35:381–388. https://doi.org/10.2341/09-344-C

    Article  PubMed  Google Scholar 

  11. Bernardon JK, Sartori N, Ballarin A, Perdigão J, Lopes GC, Baratieri LN (2010) Clinical performance of vital bleaching techniques. Oper Dent 35:3–10. https://doi.org/10.2341/09-008CR

    Article  PubMed  Google Scholar 

  12. Cardoso PC, Reis A, Loguercio A, Vieira LC, Baratieri LN (2010) Clinical effectiveness and tooth sensitivity associated with different bleaching times for a 10 percent carbamide peroxide gel. J Am Dent Assoc 141:1213–1220. https://doi.org/10.14219/jada.archive.2010.0048

    Article  PubMed  Google Scholar 

  13. de Geus JL, Wambier LM, Kossatz S, Loguercio AD, Reis A (2016) At-home vs in-office bleaching: a systematic review and meta-analysis. Oper Dent 41:341–356. https://doi.org/10.2341/15-287-LIT

    Article  PubMed  Google Scholar 

  14. Luk K, Tam L, Hubert M (2004) Effect of light energy on peroxide tooth bleaching. J Am Dent Assoc 135:194–201. https://doi.org/10.14219/jada.archive.2004.0151

    Article  PubMed  Google Scholar 

  15. Crastechini E, Borges AB, Torres C (2019) Effect of remineralizing gels on microhardness, color and wear susceptibility of bleached enamel. Oper Dent 44:76–87. https://doi.org/10.2341/17-150-L

    Article  PubMed  Google Scholar 

  16. Attia ML, Cavalli V, do Espírito Santo AM, Martin AA, D’Arce MB, Aguiar FH, Lovadino JR, do Rego MA, Cavalcanti AN, Liporoni PC (2015) Effects of bleaching agents combined with regular and whitening toothpastes on surface roughness and mineral content of enamel. Photomed Laser Surg 33:378–383. https://doi.org/10.1089/pho.2014.3835

    Article  PubMed  Google Scholar 

  17. Attin T, Vollmer D, Wiegand A, Attin R, Betke H (2005) Subsurface microhardness of enamel and dentin after different external bleaching procedures. Am J Dent 18:8–12

    PubMed  Google Scholar 

  18. do Amaral FL, Sasaki RT, da Silva TC, França FM, Flório FM, Basting RT (2012) The effects of home-use and in-office bleaching treatments on calcium and phosphorus concentrations in tooth enamel: an in vivo study. J Am Dent Assoc 143:580–586. https://doi.org/10.14219/jada.archive.2012.0236

    Article  PubMed  Google Scholar 

  19. Almassri HNS, Zhang Q, Yang X, Wu X (2019) The effect of oral anti-inflammatory drugs on reducing tooth sensitivity due to in-office dental bleaching: a systematic review and meta-analysis. J Am Dent Assoc 150:e145–e157. https://doi.org/10.1016/j.adaj.2019.05.023

    Article  PubMed  Google Scholar 

  20. Martín J, Vildósola P, Bersezio C, Herrera A, Bortolatto J, Saad JR, Oliveira OB Jr, Fernández E (2015) Effectiveness of 6% hydrogen peroxide concentration for tooth bleaching—a double-blind, randomized clinical trial. J Dent 43:965–972. https://doi.org/10.1016/j.jdent.2015.05.011

    Article  PubMed  Google Scholar 

  21. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J (2018) Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098–1107. https://doi.org/10.1016/j.biopha.2018.07.049

    Article  PubMed  Google Scholar 

  22. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281. https://doi.org/10.3322/caac.20114

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rkein AM, Ozog DM (2014) Photodynamic therapy. Dermatol Clin 32(415–425):x. https://doi.org/10.1016/j.det.2014.03.009

    Article  Google Scholar 

  24. Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, Hamblin MR (2017) Photoantimicrobials-are we afraid of the light? Lancet Infect Dis 17:e49–e55. https://doi.org/10.1016/S1473-3099(16)30268-7

    Article  PubMed  Google Scholar 

  25. Kuzekanani M, Walsh LJ (2009) Quantitative analysis of KTP laser photodynamic bleaching of tetracycline-discolored teeth. Photomed Laser Surg 27:521–525. https://doi.org/10.1089/pho.2008.2332

    Article  PubMed  Google Scholar 

  26. De Moor RJ, Verheyen J, Diachuk A, Verheyen P, Meire MA, De Coster PJ, Keulemans F, De Bruyne M, Walsh LJ (2015) Insight in the chemistry of laser-activated dental bleaching. Scientific World Journal 2015:650492. https://doi.org/10.1155/2015/650492

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mondelli RFL, de Almeida CM, Rizzante FAP, Sanches Borges AF, Ishikiriama SK, Bombonatti JFS (2018) The effects of hybrid light activation and enamel acid etching on the effectiveness, stability and sensitivity after a single session in-office bleaching: a 12-month clinical trial. Photodiagnosis Photodyn Ther 4:22–26. https://doi.org/10.1016/j.pdpdt.2018.08.009

    Article  Google Scholar 

  28. Brugnera AP, Nammour S, Rodrigues JA, Mayer-Santos E, de Freitas PM, Junior Brugnera A, Zanin F (2020) Clinical evaluation of in-office dental bleaching using a violet light-emitted diode. Photobiomodul Photomed Laser Surg 38:98–104. https://doi.org/10.1089/photob.2018.4567

    Article  PubMed  Google Scholar 

  29. Kishi A, Otsuki M, Sadr A, Ikeda M, Tagami J (2011) Effect of light units on tooth bleaching with visible-light activating titanium dioxide photocatalyst. Dent Mater J 30:723–729. https://doi.org/10.4012/dmj.2010-210

    Article  PubMed  Google Scholar 

  30. Mondelli RF, Soares AF, Pangrazio EG, Wang L, Ishikiriama SK, Bombonatti JF (2016) Evaluation of temperature increase during in-office bleaching. J Appl Oral Sci 24:136–141. https://doi.org/10.1590/1678-775720150154

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lo PC, Rodríguez-Morgade MS, Pandey RK, Ng DKP, Torres T, Dumoulin F (2020) The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem Soc Rev 49:1041–1056. https://doi.org/10.1039/c9cs00129h

    Article  PubMed  Google Scholar 

  32. Iqbal Z, Chen J, Chen Z, Huang M (2015) Phthalocyanine-biomolecule conjugated photosensitizers for targeted photodynamic therapy and imaging. Curr Drug Metab 16:816–832. https://doi.org/10.2174/1389200217666151120165404

    Article  PubMed  Google Scholar 

  33. Galstyan A (2021) Turning photons into drugs: phthalocyanine-based photosensitizers as efficient photoantimicrobials. Chemistry 27:1903–1920. https://doi.org/10.1002/chem.202002703

    Article  PubMed  Google Scholar 

  34. Santos KLM, Barros RM, da Silva Lima DP, Nunes AMA, Sato MR, Faccio R, de Lima Damasceno BPG, Oshiro-Junior JA (2020) Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: a mini-review. Photodiagnosis Photodyn Ther 32:102032. https://doi.org/10.1016/j.pdpdt.2020.102032

    Article  PubMed  Google Scholar 

  35. Chen D, Song M, Huang J, Chen N, Xue J, Huang M (2020) Photocyanine: a novel and effective phthalocyanine-based photosensitizer for cancer treatment. J Innov Opt Health Sci 13:2030009. https://doi.org/10.1142/S1793545820300098

    Article  Google Scholar 

  36. Li L, Chen D, Zheng K, Jiang L, Dai T, Yang L, Jiang L, Chen Z, Yuan C, Huang M (2020) Enhanced antitumor efficacy and imaging application of photosensitizer-formulated paclitaxel. ACS Appl Mater Interfaces 12:4221–4230. https://doi.org/10.1021/acsami.9b18396

    Article  PubMed  Google Scholar 

  37. Jiang L, Liu Y, Xu X, Su D, Zou H, Liu J, Yuan C, Huang M (2020) Inhibition of citrus canker pathogen by photosensitizer assisted with sunlight irradiation. Front Microbiol 11:571691. https://doi.org/10.3389/fmicb.2020.571691

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ullah A, Zhang Y, Iqbal Z, Zhang Y, Wang D, Chen J, Hu P, Chen Z, Huang M (2018) Household light source for potent photo-dynamic antimicrobial effect and wound healing in an infective animal model. Biomed Opt Express 9:1006–1019. https://doi.org/10.1364/BOE.9.001006

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee BS, Huang SH, Chiang YC, Chien YS, Mou CY, Lin CP (2008) Development of in vitro tooth staining model and usage of catalysts to elevate the effectiveness of tooth bleaching. Dent Mater 24:57–66. https://doi.org/10.1016/j.dental.2007.01.012

    Article  PubMed  Google Scholar 

  40. Carey CM (2014) Tooth whitening: what we now know. J Evid Based Dent Pract 14(Suppl):70–76. https://doi.org/10.1016/j.jebdp.2014.02.006

    Article  PubMed  Google Scholar 

  41. Chen Z, Zhou S, Chen J, Li L, Hu P, Chen S, Huang M (2014) An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy. J Lumin 152:103–107. https://doi.org/10.1016/j.jlumin.2013.10.067

    Article  Google Scholar 

  42. Chen Z, Zhou S, Chen J, Deng Y, Luo Z, Chen H, Huang M (2010) Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy. ChemMedChem 5:890–898. https://doi.org/10.1002/cmdc.201000042

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cui Y, Wang HL, Yin F, Xu Z, Qin XB, Yu KN, Cheng PP (2015) Safety evaluation of amino acid photosensitive disinfectant (in Chinese). J Toxicol 29:477–479. https://doi.org/10.16421/j.cnki.1002-3127.2015.06.021

    Article  Google Scholar 

  44. Chen Z, Zhang Y, Wang D, Li L, Zhou S, Huang JH, Chen J, Hu P, Huang M (2016) Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection. J Biomed Opt 21:18001. https://doi.org/10.1117/1.JBO.21.1.018001

    Article  PubMed  Google Scholar 

  45. Wang D, Zhang Y, Yan S, Chen Z, Deng Y, Xu P, Huang M (2017) An effective zinc phthalocyanine derivative against multidrug-resistant bacterial infection. J Porphyr Phthalocyanines 21:205–210. https://doi.org/10.1142/S1088424617500298

    Article  Google Scholar 

  46. Jia Y, Li J, Chen J, Hu P, Jiang L, Chen X, Huang M, Chen Z, Xu P (2018) Smart photosensitizer: tumor-triggered oncotherapy by self-assembly photodynamic nanodots. ACS Appl Mater Interfaces 10:15369–15380. https://doi.org/10.1021/acsami.7b19058

    Article  PubMed  Google Scholar 

  47. Zheng K, Liu H, Liu X, Jiang L, Li L, Wu X, Guo N, Ding C, Huang M (2020) Photo-triggered release of doxorubicin from liposomes formulated by amphiphilic phthalocyanines for combination therapy to enhance antitumor efficacy. J Mater Chem B 8:8022–8036. https://doi.org/10.1039/d0tb01093f

    Article  PubMed  Google Scholar 

  48. Smirnova ZS, Oborotova NA, Makarova OA, Orlova OL, Polozkova AP, Kubasova IY (2005) Efficiency and pharmacokinetics of photosense: a new liposomal photosensitizer formulation based on aluminum sulfophthalocyanine. Pharm Chem J 39:341–344. https://doi.org/10.1007/s11094-005-0150-8

    Article  Google Scholar 

  49. Chen J, Hou L, Zheng K, Wang J, Chen N, Huang J, Wu M, Xue J (2020) Blood distribution and plasma protein binding of photocyanine: a promising phthalocyanine photosensitizer inphase II clinical trials. Eur J Pharm Sci 153:105491. https://doi.org/10.1016/j.ejps.2020.105491

    Article  PubMed  Google Scholar 

  50. US Food and Drug Administration (2017) Summary of color additives for use in the United States in foods, drugs, cosmetics, and medical devices

  51. Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73. https://doi.org/10.1016/j.mib.2016.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR (2012) Type I and type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med 44:490–499. https://doi.org/10.1002/lsm.22045

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Zheng K, Chen Z, Chen J, Hu P, Cai L, Iqbal Z, Huang M (2017) Rapid killing of bacteria by a new type of photosensitizer. Appl Microbiol Biotechnol 101:4691–4700. https://doi.org/10.1007/s00253-017-8133-8

    Article  PubMed  Google Scholar 

  54. Bizhang M, Chun YH, Damerau K, Singh P, Raab WH, Zimmer S (2009) Comparative clinical study of the effectiveness of three different bleaching methods. Oper Dent 34:635–641. https://doi.org/10.2341/08-069-C

    Article  PubMed  Google Scholar 

  55. Cooper JS, Bokmeyer TJ, Bowles WH (1992) Penetration of the pulp chamber by carbamide peroxide bleaching agents. J Endod 18:315–317. https://doi.org/10.1016/S0099-2399(06)80479-6

    Article  PubMed  Google Scholar 

  56. Joiner A, Thakker G (2004) In vitro evaluation of a novel 6% hydrogen peroxide tooth whitening product. J Dent 32(Suppl):19–25. https://doi.org/10.1016/j.jdent.2003.10.007

    Article  PubMed  Google Scholar 

  57. Matis BA, Wang Y, Jiang T, Eckert GJ (2002) Extended at-home bleaching of tetracycline-stained teeth with different concentrations of carbamide peroxide. Quintessence Int 33:645–655

    PubMed  Google Scholar 

  58. Basting RT, Rodrigues AL Jr, Serra MC (2005) The effect of 10% carbamide peroxide, carbopol and/or glycerin on enamel and dentin microhardness. Oper Dent 30:608–616

    PubMed  Google Scholar 

  59. Rodrigues JA, Marchi GM, Ambrosano GM, Heymann HO, Pimenta LA (2005) Microhardness evaluation of in situ vital bleaching on human dental enamel using a novel study design. Dent Mater 21:1059–1067. https://doi.org/10.1016/j.dental.2005.03.011

    Article  PubMed  Google Scholar 

  60. Lilaj B, Dauti R, Agis H, Schmid-Schwap M, Franz A, Kanz F, Moritz A, Schedle A, Cvikl B (2019) Comparison of bleaching products with up to 6% and with more than 6% hydrogen peroxide: whitening efficacy using BI and WID and side effects - an in vitro study. Front Physiol 10:919. https://doi.org/10.3389/fphys.2019.00919

    Article  PubMed  PubMed Central  Google Scholar 

  61. Oltu U, Gürgan S (2000) Effects of three concentrations of carbamide peroxide on the structure of enamel. J Oral Rehabil 27:332–340. https://doi.org/10.1046/j.1365-2842.2000.00510.x

    Article  PubMed  Google Scholar 

  62. da Costa Soares MU, Araújo NC, Borges BC, Sales Wda S, Sobral AP (2013) Impact of remineralizing agents on enamel microhardness recovery after in-office tooth bleaching therapies. Acta Odontol Scand 71:343–348. https://doi.org/10.3109/00016357.2012.681119

    Article  PubMed  Google Scholar 

  63. SoutoMaior JR, de Moraes S, Lemos C, Vasconcelos BDE, Montes M, Pellizzer EP (2019) Effectiveness of light sources on in-office dental bleaching: a systematic review and meta-analyses. Oper Dent 44:E105–E117. https://doi.org/10.2341/17-280-L

    Article  PubMed  Google Scholar 

  64. Kossatz S, Dalanhol AP, Cunha T, Loguercio A, Reis A (2011) Effect of light activation on tooth sensitivity after in-office bleaching. Oper Dent 36:251–257. https://doi.org/10.2341/10-289-C

    Article  PubMed  Google Scholar 

  65. He LB, Shao MY, Tan K, Xu X, Li JY (2012) The effects of light on bleaching and tooth sensitivity during in-office vital bleaching: a systematic review and meta-analysis. J Dent 40:644–653. https://doi.org/10.1016/j.jdent.2012.04.010

    Article  PubMed  Google Scholar 

  66. Lima DA, Aguiar FH, Liporoni PC, Munin E, Ambrosano GM, Lovadino JR (2009) In vitro evaluation of the effectiveness of bleaching agents activated by different light sources. J Prosthodont 18:249–254. https://doi.org/10.1111/j.1532-849X.2008.00420.x

    Article  PubMed  Google Scholar 

  67. Marson FC, Sensi LG, Vieira LC, Araújo E (2008) Clinical evaluation of in-office dental bleaching treatments with and without the use of light-activation sources. Oper Dent 33:15–22. https://doi.org/10.2341/07-57

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Stomatological Key Laboratory of Fujian College and University, China, and the authors are grateful to Professor Hao Yu for technical support. Our research work is financially supported by grants from National Key R&D Program of China (2017YFE0103200), Natural Science Foundation of China (31670739, 22077016, 82070142), Natural Science Foundation of Fujian Province (2018J01823, 2018J01897, 2018J01729), and Science and Technology Program of Fuzhou (2018-S-106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingdong Huang or Minkui Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wu, Z., Wang, J. et al. Expanding the applications of photodynamic therapy—tooth bleaching. Clin Oral Invest 26, 2175–2186 (2022). https://doi.org/10.1007/s00784-021-04199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04199-7

Keywords

Navigation