Skip to main content

Advertisement

Log in

Efficacy of periodontal minimally invasive surgery with and without regenerative materials for treatment of intrabony defect: a randomized clinical trial

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The minimally invasive surgical technique was modified in suture (MISTms) in this study. The trial was to determine the efficacy of MISTms with and without regenerative materials for the treatment of intrabony defect and to identify factors influencing 1-year clinical attachment level (CAL) gain.

Methods

Thirty-six patients with interdental intrabony defects were randomly assigned to MISTms (MISTms alone, 18) or MISTms plus deproteinized bovine bone mineral and collagen membrane (MISTms combined, 18). Wound healing was evaluated by early healing index (EHI) at 1, 2, 3, and 6 weeks. Probing depth (PD), CAL, gingival recession, radiographic defect depth, and distance from the base of defect to the cementoenamel junction were recorded at baseline and 1 year postoperatively. A one-year composite outcome measure based on the combination of CAL gain and post-surgery PD was evaluated. Factors influencing 1-year CAL gain were analyzed.

Results

Fifteen patients in MISTms-alone and 16 in the MISTms-combined group finished the study. The MISTms-alone group showed significantly better wound healing at 1 week. CAL significantly gained in the MISTms-alone and MISTms-combined group, with 2.53 ± 1.80 mm and 2.00 ± 1.38 mm respectively. The radiographic bone gain was 3.00 ± 1.56 mm and 3.85 ± 1.69 mm respectively. However, there were no significant differences between the two groups about 1-year outcomes. Lower EHI (optimal wound healing) and more baseline CAL positively influenced 1-year CAL gain.

Conclusions

MISTms is an effective treatment for intrabony defects. The regenerative materials do not show an additional effect on 1-year outcomes. Early wound healing and baseline CAL are factors influencing 1-year CAL gain.

Clinical relevance

MISTms with and without regenerative materials are both effective treatments for intrabony defect.

Trial registration

ClinicalTrials.gov Identifier: ChiCTR2100043272

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abusleme L, Hoare A, Hong BY, Diaz PI (2021) Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000 86(1):57–78. https://doi.org/10.1111/prd.12362

    Article  PubMed  Google Scholar 

  2. Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F (2021) The dental plaque biofilm matrix. Periodontol 2000 86(1):32–56. https://doi.org/10.1111/prd.12361

    Article  PubMed  Google Scholar 

  3. Camelo M, Nevins ML, Schenk RK, Simion M, Rasperini G, Lynch SE, Nevins M (1998) Clinical, radiographic, and histologic evaluation of human periodontal defects treated with Bio-Oss and Bio-Gide. Int J Periodontics Restorative Dent 18(4):321–331

    PubMed  Google Scholar 

  4. Mellonig JT (2000) Human histologic evaluation of a bovine-derived bone xenograft in the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent 20(1):19–29

    PubMed  Google Scholar 

  5. Tonetti MS, Cortellini P, Lang NP, Suvan JE, Adriaens P, Dubravec D, Fonzar A, Fourmousis I, Rasperini G, Rossi R, Silvestri M, Topoll H, Wallkamm B, Zybutz M (2004) Clinical outcomes following treatment of human intrabony defects with GTR/bone replacement material or access flap alone. A multicenter randomized controlled clinical trial. J Clin Periodontol 31(9):770–776. https://doi.org/10.1111/j.1600-051X.2004.00562.x

    Article  PubMed  Google Scholar 

  6. Camargo PM, Lekovic V, Weinlaender M, Nedic M, Vasilic N, Wolinsky LE, Kenney EB (2000) A controlled re-entry study on the effectiveness of bovine porous bone mineral used in combination with a collagen membrane of porcine origin in the treatment of intrabony defects in humans. J Clin Periodontol 27(12):889–896. https://doi.org/10.1034/j.1600-051x.2000.027012889.x

    Article  PubMed  Google Scholar 

  7. Nowzari H, Matian F, Slots J (1995) Periodontal pathogens on polytetrafluoroethylene membrane for guided tissue regeneration inhibit healing. J Clin Periodontol 22(6):469–474. https://doi.org/10.1111/j.1600-051X.1995.tb00179.x

    Article  PubMed  Google Scholar 

  8. De Sanctis M, Zucchelli G, Clauser C (1996) Bacterial colonization of barrier material and periodontal regeneration. J Clin Periodontol 23(11):1039–1046. https://doi.org/10.1902/jop.1996.67.11.1193

    Article  PubMed  Google Scholar 

  9. Harrel SK, Rees TD (1995) Granulation tissue removal in routine and minimally invasive procedures. Compend Contin Educ Dent 16(9):960, 962, 964

    PubMed  Google Scholar 

  10. Cortellini P, Prato GP, Tonetti MS (1995) The modified papilla preservation technique. A new surgical approach for interproximal regenerative procedures. J Periodontol 66(4):261–266. https://doi.org/10.1902/jop.1995.66.4.261

    Article  PubMed  Google Scholar 

  11. Cortellini P, Prato GP, Tonetti MS (1999) The simplified papilla preservation flap. A novel surgical approach for the management of soft tissues in regenerative procedures. Int J Periodontics Restorative Dent 19(6):589–599

    PubMed  Google Scholar 

  12. Cortellini P, Tonetti MS (2001) Microsurgical approach to periodontal regeneration. Initial evaluation in a case cohort. J Periodontol 72(4):559–569. https://doi.org/10.1902/jop.2001.72.4.559

    Article  PubMed  Google Scholar 

  13. Cortellini P, Tonetti MS (2005) Clinical performance of a regenerative strategy for intrabony defects: scientific evidence and clinical experience. J Periodontol 76(3):341–350. https://doi.org/10.1902/jop.2005.76.3.341

    Article  PubMed  Google Scholar 

  14. Cortellini P, Tonetti MS (2007) A minimally invasive surgical technique with an enamel matrix derivative in the regenerative treatment of intra-bony defects: a novel approach to limit morbidity. J Clin Periodontol 34(1):87–93. https://doi.org/10.1111/j.1600-051X.2006.01020.x

    Article  PubMed  Google Scholar 

  15. Cortellini P, Tonetti MS (2007) Minimally invasive surgical technique and enamel matrix derivative in intra-bony defects. I: Clinical outcomes and morbidity. J Clin Periodontol 34(12):1082–1088. https://doi.org/10.1111/j.1600-051X.2007.01144.x

    Article  PubMed  Google Scholar 

  16. Ribeiro FV, Nociti Júnior FH, Sallum EA, Sallum AW, Casati MZ (2010) Use of enamel matrix protein derivative with minimally invasive surgical approach in intra-bony periodontal defects: clinical and patient-centered outcomes. Braz Dent J 21(1):60–67. https://doi.org/10.1590/S0103-64402010000100010

    Article  PubMed  Google Scholar 

  17. Ribeiro FV, Casarin RC, Júnior FH, Sallum EA, Casati MZ (2011) The role of enamel matrix derivative protein in minimally invasive surgery in treating intrabony defects in single-rooted teeth: a randomized clinical trial. J Periodontol 82(4):522–532. https://doi.org/10.1902/jop.2010.100454

    Article  PubMed  Google Scholar 

  18. Ribeiro FV, Casarin RC, Palma MA, Júnior FH, Sallum EA, Casati MZ (2011) Clinical and patient-centered outcomes after minimally invasive non-surgical or surgical approaches for the treatment of intrabony defects: a randomized clinical trial. J Periodontol 82(9):1256–1266. https://doi.org/10.1902/jop.2011.100680

    Article  PubMed  Google Scholar 

  19. Wachtel H, Schenk G, Böhm S, Weng D, Zuhr O, Hürzeler MB (2003) Microsurgical access flap and enamel matrix derivative for the treatment of periodontal intrabony defects: a controlled clinical study. J Clin Periodontol 30(6):496–504. https://doi.org/10.1034/j.1600-051X.2003.00013.x

    Article  PubMed  Google Scholar 

  20. Fickl S, Thalmair T, Kebschull M, Böhm S, Wachtel H (2009) Microsurgical access flap in conjunction with enamel matrix derivative for the treatment of intra-bony defects: a controlled clinical trial. J Clin Periodontol 36(9):784–790. https://doi.org/10.1111/j.1600-051X.2009.01451.x

    Article  PubMed  Google Scholar 

  21. Trombelli L, Simonelli A, Pramstraller M, Wikesjö UM, Farina R (2010) Single flap approach with and without guided tissue regeneration and a hydroxyapatite biomaterial in the management of intraosseous periodontal defects. J Periodontol 81(9):1256–1263. https://doi.org/10.1902/jop.2010.100113

    Article  PubMed  Google Scholar 

  22. Cortellini P, Tonetti MS (2011) Clinical and radiographic outcomes of the modified minimally invasive surgical technique with and without regenerative materials: a randomized-controlled trial in intra-bony defects. J Clin Periodontol 38(4):365–573. https://doi.org/10.1111/j.1600-051X.2011.01705.x

    Article  PubMed  Google Scholar 

  23. Mishra A, Avula H, Pathakota KR, Avula J (2013) Efficacy of modified minimally invasive surgical technique in the treatment of human intrabony defects with or without use of rhPDGF-BB gel: a randomized controlled trial. J Clin Periodontol 40(2):172–179. https://doi.org/10.1111/jcpe.12030

    Article  PubMed  Google Scholar 

  24. Ahmad N, Tewari S, Narula SC, Sharma RK, Tanwar N (2019) Platelet-rich fibrin along with a modified minimally invasive surgical technique for the treatment of intrabony defects: a randomized clinical trial. J Periodontal Implant Sci 49(6):355–365. https://doi.org/10.5051/jpis.2019.49.6.355

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cortellini P, Pini-Prato G, Nieri M, Tonetti MS (2009) Minimally invasive surgical technique and enamel matrix derivative in intrabony defects: 2. Factors associated with healing outcomes. Int J Periodontics Restorative Dent 29(3):257–265

    PubMed  Google Scholar 

  26. Cosyn J, Cleymaet R, Hanselaer L, De Bruyn H (2012) Regenerative periodontal therapy of infrabony defects using minimally invasive surgery and a collagen-enriched bovine-derived xenograft: a 1-year prospective study on clinical and aesthetic outcome. J Clin Periodontol 39(10):979–986. https://doi.org/10.1111/j.1600-051X.2012.01924.x

    Article  PubMed  Google Scholar 

  27. Farina R, Simonelli A, Rizzi A, Pramstraller M, Cucchi A, Trombelli L (2013) Early postoperative healing following buccal single flap approach to access intraosseous periodontal defects. Clin Oral Investig 17(6):1573–1583. https://doi.org/10.1007/s00784-012-0838-6

    Article  PubMed  Google Scholar 

  28. Armitage GC (1999) Development of a classification system for periodontal diseases and conditions. Ann Periodontol 4(1):1–6. https://doi.org/10.1902/annals.1999.4.1.1

    Article  PubMed  Google Scholar 

  29. Glickman I (1972) Clinical periodontology: prevention, diagnosis, and treatment of periodontal disease in the practice of general dentistry, 4th edn. Saunders, Philadelphia, pp. 242–245

  30. Yilmaz S, Cakar G, Yildirim B, Sculean A (2010) Healing of two and three wall intrabony periodontal defects following treatment with an enamel matrix derivative combined with autogenous bone. J Clin Periodontol 37(6):544–550. https://doi.org/10.1111/j.1600-051X.2010.01567.x

    Article  PubMed  Google Scholar 

  31. Silness J, LOE H, (1964) Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condition. Acta Odontol Scand 22:121–135. https://doi.org/10.3109/00016356408993968

    Article  PubMed  Google Scholar 

  32. Mazza JE, Newman MG, Sims TN (1981) Clinical and antimicrobial effect of stannous fluoride on periodontitis. J Clin Periodontol 8(3):203–212. https://doi.org/10.1111/j.1600-051X.1981.tb02031.x

    Article  PubMed  Google Scholar 

  33. Trombelli L, Farina R, Vecchiatini R, Maietti E, Simonelli A (2020) A simplified composite outcome measure to assess the effect of periodontal regenerative treatment in intraosseous defects. J Periodontol 91(6):723–731. https://doi.org/10.1002/JPER.19-0127

    Article  PubMed  Google Scholar 

  34. Steffensen B, Webert HP (1989) Relationship between the radiographic periodontal defect angle and healing after treatment. J Periodontol 60(5):248–254. https://doi.org/10.1902/jop.1989.60.5.248

    Article  PubMed  Google Scholar 

  35. Eickholz P, Hörr T, Klein F, Hassfeld S, Kim TS (2004) Radiographic parameters for prognosis of periodontal healing of infrabony defects: two different definitions of defect depth. J Periodontol 75(3):399–407. https://doi.org/10.1902/jop.2004.75.3.399

    Article  PubMed  Google Scholar 

  36. Ribeiro FV, Casarin RC, Palma MA, Júnior FH, Sallum EA, Casati MZ (2013) Clinical and microbiological changes after minimally invasive therapeutic approaches in intrabony defects: a 12-month follow-up. Clin Oral Investig 17(7):1635–1644. https://doi.org/10.1007/s00784-012-0855-5

    Article  PubMed  Google Scholar 

  37. Susin C, Wikesjö UM (1983) Regenerative periodontal therapy: 30 years of lessons learned and unlearned. Periodontol 2000 62(1):232–242. https://doi.org/10.1111/prd.12003

    Article  Google Scholar 

  38. Polson AM, Proye MP (1983) Fibrin linkage: a precursor for new attachment. J Periodontol 54(3):141–147. https://doi.org/10.1902/jop.1983.54.3.141

    Article  PubMed  Google Scholar 

  39. Wikesjö UM, Claffey N, Egelberg J (1991) Periodontal repair in dogs. Effect of heparin treatment of the root surface. J Clin Periodontol 18(1):60–64. https://doi.org/10.1111/j.1600-051X.1991.tb01120.x

    Article  PubMed  Google Scholar 

  40. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T (2009) Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60(3):813–823. https://doi.org/10.1002/art.24330

    Article  PubMed  Google Scholar 

  41. Du L, Yang P, Ge S (2012) Stromal cell-derived factor-1 significantly induces proliferation, migration, and collagen type I expression in a human periodontal ligament stem cell subpopulation. J Periodontol 83(3):379–388. https://doi.org/10.1902/jop.2011.110201

    Article  PubMed  Google Scholar 

  42. Kaku M, Kitami M, Rosales Rocabado JM, Ida T, Akiba Y, Uoshima K (2017) Recruitment of bone marrow-derived cells to the periodontal ligament via the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 axis. J Periodontal Res 52(4):686–694. https://doi.org/10.1111/jre.12433

    Article  PubMed  Google Scholar 

  43. Murakami S (2011) Periodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy? Periodontol 2000 56(1):188–208. https://doi.org/10.1111/j.1600-0757.2010.00365.x

    Article  PubMed  Google Scholar 

  44. Smith PC, Martínez C, Cáceres M, Martínez J (2015) Research on growth factors in periodontology. Periodontol 2000 67(1):234–250. https://doi.org/10.1111/prd.12068

    Article  PubMed  Google Scholar 

  45. Takayama S, Murakami S, Shimabukuro Y, Kitamura M, Okada H (2001) Periodontal regeneration by FGF-2 (bFGF) in primate models. J Dent Res 80(12):2075–2079. https://doi.org/10.1177/00220345010800121001

    Article  PubMed  Google Scholar 

  46. Teare JA, Ramoshebi LN, Ripamonti U (2008) Periodontal tissue reeneration by recombinant human transforming growth factor-beta 3 in Papio ursinus. J Periodontal Res 43(1):1–8. https://doi.org/10.1111/j.1600-0765.2007.00987.x

    Article  PubMed  Google Scholar 

  47. Nobuto T, Suwa F, Kono T, Taguchi Y, Takahashi T, Kanemura N, Terada S, Imai H (2005) Microvascular response in the periosteum following mucoperiosteal flap surgery in dogs: angiogenesis and bone resorption and formation. J Periodontol 76(8):1346–1353. https://doi.org/10.1902/jop.2005.76.8.1346

    Article  PubMed  Google Scholar 

  48. Xu QC, Wang ZG, Ji QX, Yu XB, Xu XY, Yuan CQ, Deng J, Yang PS (2014) Systemically transplanted human gingiva-derived mesenchymal stem cells contributing to bone tissue regeneration. Int J Clin Exp Pathol 7(8):4922–4929

    PubMed  PubMed Central  Google Scholar 

  49. Zhou LL, Liu HW, Wen XX, Xie H (2014) Involvement of bone marrow stem cells in periodontal wound healing. Chin J Dent Res 17(2):105–110

    PubMed  Google Scholar 

  50. Du J, Shan Z, Ma P, Wang S, Fan Z (2014) Allogeneic bone marrow mesenchymal stem cell transplantation for periodontal regeneration. J Dent Res 93(2):183–188. https://doi.org/10.1177/0022034513513026

    Article  PubMed  Google Scholar 

  51. Nagata M, Iwasaki K, Akazawa K, Komaki M, Yokoyama N, Izumi Y, Morita I (2017) Conditioned medium from periodontal ligament stem cells enhances periodontal regeneration. Tissue Eng Part A 23(9–10):367–377. https://doi.org/10.1089/ten.tea.2016.0274

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tassi SA, Sergio NZ, Misawa MYO, Villar CC (2017) Efficacy of stem cells on periodontal regeneration: systematic review of pre-clinical studies. J Periodontal Res 52(5):793–812. https://doi.org/10.1111/jre.12455

    Article  PubMed  Google Scholar 

  53. Zanetta-Barbosa D, Klinge B, Svensson H (1993) Laser Doppler flowmetry of blood perfusion in mucoperiosteal flaps covering membranes in bone augmentation and implant procedures. A pilot study in dogs. Clin Oral Implants Res 4(1):35–38. https://doi.org/10.1034/j.1600-0501.1993.040105.x

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Beijing Municipal Commission of Science and Technology (Z141107002514059).

Author information

Authors and Affiliations

Authors

Contributions

All authors have made substantial contributions to the study. Bei Liu contributed with data analysis, data interpretation, and manuscript drafting. Xiangying Ouyang designed the study and treated patients. Jun Kang performed the clinical evaluation. Shuangying Zhou performed a radiographic evaluation. Chao Suo and Lingqiao Xu contributed to data entry and verification. Jianru Liu performed randomization. Wenyi Liu assisted for study organization.

Corresponding author

Correspondence to Xiangying Ouyang.

Ethics declarations

Ethical approval

The Ethics Committee of Peking University School and Hospital of Stomatology approved the study protocol (PKUSSIRB-2012080). The trial was registered at the Chinese Clinical Trial Registry (ChiCTR2100043272). All procedures involving human participants were performed in accordance with the ethical principles of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

All participants included in the study signed the informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Ouyang, X., Kang, J. et al. Efficacy of periodontal minimally invasive surgery with and without regenerative materials for treatment of intrabony defect: a randomized clinical trial. Clin Oral Invest 26, 1613–1623 (2022). https://doi.org/10.1007/s00784-021-04134-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-021-04134-w

Keywords

Navigation