Skip to main content

Advertisement

Log in

Restorative CAD/CAM materials in dentistry: analysis of their fluorescence properties and the applicability of the fluorescence-aided identification technique (FIT)

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study investigated the fluorescence properties of the most commonly used fluorescent CAD/CAM materials for monolithic dental restorations and their suitability to perform the fluorescence-aided identification technique (FIT).

Materials and methods

A total of 175 different color shades (n = 1) from 13 CAD/CAM material brands were analyzed with a monochromator-based microplate reader. Additionally, dentin, enamel, and combined dentin-enamel specimens (respectively, n = 11) were analyzed for comparison purposes. The maximum fluorescence intensity, the corresponding excitation and emission wavelength, and the total fluorescence for the wavelength spectrum λex = 395 nm − 415 nm used for FIT were determined.

Results

All assessed CAD/CAM ceramics showed virtually no total fluorescence for the wavelength spectrum λex = 395 nm − 415 nm used for FIT. CERASMARTTM, KZR-CAD HD 2, and LuxaCam Composite displayed total fluorescence values similar to that of the tooth hard substances. All other resin-based CAD/CAM materials showed a significantly higher total fluorescence than the tooth hard substances.

Conclusions

Apart from the mentioned exceptions, all CAD/CAM materials assessed could be suitable for the FIT, either because they are more fluorescent than hard tooth substances or because they do not fluoresce at all at the respective wavelength of λex = 395 nm − 415 nm.

Clinical relevance

This study provides insight into the not yet well-known fluorescent properties of dental CAD/CAM materials. This knowledge is not only necessary to reproduce the fluorescence properties of natural teeth but also for the applicability of diagnostic fluorescence inducing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rekow D (1987) Computer-aided design and manufacturing in dentistry: a review of the state of the art. J Prosthet Dent 58(4):512–516. https://doi.org/10.1016/0022-3913(87)90285-x

    Article  PubMed  Google Scholar 

  2. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117

    Google Scholar 

  3. Zaruba M, Mehl A (2017) Chairside systems: a current review. Int J Comput Dent 20(2):123–149

    PubMed  Google Scholar 

  4. Chochlidakis KM, Papaspyridakos P, Geminiani A, Chen CJ, Feng IJ, Ercoli C (2016) Digital versus conventional impressions for fixed prosthodontics: a systematic review and meta-analysis. J Prosthet Dent 116(2):184–190.e112. https://doi.org/10.1016/j.prosdent.2015.12.017

    Article  PubMed  Google Scholar 

  5. Gallardo YR, Bohner L, Tortamano P, Pigozzo MN, Lagana DC, Sesma N (2018) Patient outcomes and procedure working time for digital versus conventional impressions: a systematic review. J Prosthet Dent 119(2):214–219. https://doi.org/10.1016/j.prosdent.2017.07.007

    Article  PubMed  Google Scholar 

  6. Barenghi L, Barenghi A, Cadeo C, Di Blasio A (2019) Innovation by computer-aided design/computer-aided manufacturing technology: a look at infection prevention in dental settings. Biomed Res Int 2019:6092018–6092015. https://doi.org/10.1155/2019/6092018

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bajraktarova-Valjakova E, Korunoska-Stevkovska V, Kapusevska B, Gigovski N, Bajraktarova-Misevska C, Grozdanov A (2018) Contemporary dental ceramic materials, a review: chemical composition, physical and mechanical properties, indications for use. Open Access Maced J Med Sci 6(9):1742–1755. https://doi.org/10.3889/oamjms.2018.378

    Article  PubMed  PubMed Central  Google Scholar 

  8. Blatz MB, Conejo J (2019) The current state of chairside digital dentistry and materials. Dent Clin N Am 63(2):175–197. https://doi.org/10.1016/j.cden.2018.11.002

    Article  PubMed  Google Scholar 

  9. Spitznagel FA, Boldt J, Gierthmuehlen PC (2018) CAD/CAM ceramic restorative materials for natural teeth. J Dent Res 97(10):1082–1091. https://doi.org/10.1177/0022034518779759

    Article  PubMed  Google Scholar 

  10. Krejci I, Lieber CM, Lutz F (1995) Time required to remove totally bonded tooth-colored posterior restorations and related tooth substance loss. Dent Mater 11(1):34–40. https://doi.org/10.1016/0109-5641(95)80006-9

    Article  PubMed  Google Scholar 

  11. Szep S, Baum C, Alamouti C, Schmidt D, Gerhardt T, Heidemann D (2002) Removal of amalgam, glass-ionomer cement and compomer restorations: changes in cavity dimensions and duration of the procedure. Oper Dent 27(6):613–620

    PubMed  Google Scholar 

  12. Dörter C, Yildiz E, Erdemir U (2003) Effect of operators’ skills on increase in cavity volume of restorations. Quintessence Int 34(1):27–30

    PubMed  Google Scholar 

  13. Hunter AR, Treasure ET, Hunter AJ (1995) Increases in cavity volume associated with the removal of class 2 amalgam and composite restorations. Oper Dent 20(1):2–6

    PubMed  Google Scholar 

  14. Carson DO, Orihara Y, Sorbie JL, Pounder DJ (1997) Detection of white restorative dental materials using an alternative light source. Forensic Sci Int 88(2):163–168

    Article  Google Scholar 

  15. Clark DH, Ruddick RF (1985) Post mortem detection of tooth coloured dental restorations by ultra violet radiation. Acta Med Leg Soc 35(1):278–284

    Google Scholar 

  16. Pretty IA, Smith PW, Edgar WM, Higham SM (2002) The use of quantitative light-induced fluorescence (QLF) to identify composite restorations in forensic examinations. J Forensic Sci 47(4):831–836

    Article  Google Scholar 

  17. Bush MA, Hermanson AS, Yetto RJ, Wieczkowski G Jr (2010) The use of ultraviolet LED illumination for composite resin removal: an in vitro study. Gen Dent 58(5):e214–e218

    PubMed  Google Scholar 

  18. Hermanson AS, Bush MA, Miller RG, Bush PJ (2008) Ultraviolet illumination as an adjunctive aid in dental inspection. J Forensic Sci 53(2):408–411. https://doi.org/10.1111/j.1556-4029.2008.00657.x

    Article  PubMed  Google Scholar 

  19. Lim YK, Lee YK (2007) Fluorescent emission of varied shades of resin composites. Dent Mater 23(10):1262–1268. https://doi.org/10.1016/j.dental.2006.11.022

    Article  PubMed  Google Scholar 

  20. Tani K, Watari F, Uo M, Morita M (2003) Discrimination between composite resin and teeth using fluorescence properties. Dent Mater J 22(4):569–580

    Article  Google Scholar 

  21. Meller C, Klein C (2012) Fluorescence properties of commercial composite resin restorative materials in dentistry. Dent Mater J 31(6):916–923

    Article  Google Scholar 

  22. Meller C, Klein C (2015) Fluorescence of composite resins: a comparison among properties of commercial shades. Dent Mater J 34(6):754–765. https://doi.org/10.4012/dmj.2014-219

    Article  PubMed  Google Scholar 

  23. Kiran R, Chapman J, Tennant M, Forrest A, Walsh LJ (2019) Detection of tooth-colored restorative materials for forensic purposes based on their optical properties: an in vitro comparative study. J Forensic Sci 64(1):254–259. https://doi.org/10.1111/1556-4029.13851

    Article  PubMed  Google Scholar 

  24. Meller C, Connert T, Löst C, ElAyouti A (2017) Reliability of a fluorescence-aided identification technique (FIT) for detecting tooth-colored restorations: an ex vivo comparative study. Clin Oral Investig 21(1):347–355. https://doi.org/10.1007/s00784-016-1797-0

    Article  PubMed  Google Scholar 

  25. Salomao FM, Rocha RS, Franco LM, Sundfeld RH, Bresciani E, Fagundes TC (2019) Auxiliary UV light devices for removal of fluorescent resin residues after bracket debonding. J Esthet Restor Dent 31(1):58–63. https://doi.org/10.1111/jerd.12412

    Article  PubMed  Google Scholar 

  26. Schott TC, Meller C (2018) A new fluorescence-aided identification technique (FIT) for optimal removal of resin-based bracket bonding remnants after orthodontic debracketing. Quintessence Int 49(10):809–813. https://doi.org/10.3290/j.qi.a41171

    Article  PubMed  Google Scholar 

  27. Stadler O, Dettwiler C, Meller C, Dalstra M, Verna C, Connert T (2019) Evaluation of a fluorescence-aided identification technique (FIT) to assist clean-up after orthodontic bracket debonding. Angle Orthod 89(6):876–882. https://doi.org/10.2319/100318714.1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Saccardin F, Ortiz V, Dettwiler C, Connert T, Filippi A (2019) Removal of composite-bonded trauma splints using the fluorescence-aided identification technique (FIT). Quintessence Int 50(6):456–460

    PubMed  Google Scholar 

  29. Dettwiler C, Meller C, Eggmann F, Saccardin F, Kuhl S, Filippi A, Krastl G, Weiger R, Connert T (2018) Evaluation of a fluorescence-aided identification technique (FIT) for removal of composite bonded trauma splints. Dent Traumatol 34(5):353–359. https://doi.org/10.1111/edt.12425

    Article  PubMed  Google Scholar 

  30. Kiran R, Chapman J, Tennant M, Forrest A, Walsh LJ (2019) Fluorescence-aided selective removal of resin-based composite restorative materials: an in vitro comparative study. J Esthet Restor Dent 32:310–316. https://doi.org/10.1111/jerd.12536

    Article  PubMed  Google Scholar 

  31. Dettwiler C, Eggmann F, Matthisson L, Meller C, Weiger R, Connert T (2019) Fluorescence-aided composite removal in directly restored permanent posterior teeth. Oper Dent 45:62–70. https://doi.org/10.2341/19-032-l

    Article  PubMed  Google Scholar 

  32. Klein C, Babai A, von Ohle C, Herz M, Wolff D, Meller C (2019) Minimally invasive removal of tooth-colored restorations: evaluation of a novel handpiece using the fluorescence-aided identification technique (FIT). Clin Oral Investig 24:2735–2743. https://doi.org/10.1007/s00784-019-03135-0

    Article  PubMed  Google Scholar 

  33. Stockman A, Jägle H, Pirzer M, Sharpe LT (2008) The dependence of luminous efficiency on chromatic adaptation. J Vis 8(16):1-1-26. https://doi.org/10.1167/8.16.1

    Article  PubMed  Google Scholar 

  34. Sharpe LT, Stockman A, Jagla W, Jägle H (2005) A luminous efficiency function, V*(λ), for daylight adaptation. J Vis 5(11):948–968. https://doi.org/10.1167/5.11.3

    Article  PubMed  Google Scholar 

  35. Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vis Res 40(13):1711–1737. https://doi.org/10.1016/S0042-6989(00)00021-3

    Article  PubMed  Google Scholar 

  36. Mazur-Koczorowska A, Sikorska E, Krawczyk A, Khmelinskii I, Sikorski M, Koczorowski R, Stopa J (2008) Luminescence of selected dental composites in vitro. Dent Mater 24(10):1329–1335. https://doi.org/10.1016/j.dental.2008.02.014

    Article  PubMed  Google Scholar 

  37. Gawriołek M, Sikorska E, Ferreira LFV, Costa AI, Khmelinskii I, Krawczyk A, Sikorski M, Koczorowski PR (2012) Color and luminescence stability of selected dental materials in vitro. J Prosthodont 21(2):112–122. https://doi.org/10.1111/j.1532-849X.2011.00808.x

    Article  PubMed  Google Scholar 

  38. Antonov M, Lenhardt L, Manojlovic D, Milicevic B, Zekovic I, Dramicanin MD (2016) Changes of color and fluorescence of resin composites immersed in beer. J Esthet Restor Dentist 28(5):330–338. https://doi.org/10.1111/jerd.12232

    Article  Google Scholar 

  39. Laurila UR, Mancewicz SA, Forziati AF (1960) Isolation and partial fractiontion of fluorescence material from human teeth. J Dent Res 39(4):714 Abstr. No. 175. https://doi.org/10.1177/00220345600390040301

    Article  Google Scholar 

  40. Armstrong WG (1963) Fluorescence characteristics of sound and carious human dentine preparations. Arch Oral Biol 8(2):79–90. https://doi.org/10.1016/0003-9969(63)90045-1

    Article  Google Scholar 

  41. Spitzer D, Bosch JJ (1976) The total luminescence of bovine and human dental enamel. Calcif Tissue Res 2:201–208

    Article  Google Scholar 

  42. Monsénego G, Burdairon G, Porte C, Naud C (1990) Étude de la fluorescence de la porcelaine dentaire: Matériel et méthodes. Cah Prothese 70:79–85

    Google Scholar 

  43. Monsénego G, Burdairon G, Clerjaud B (1993) Fluorescence of dental porcelain. J Prosthet Dent 69(1):106–113

    Article  Google Scholar 

  44. Rattle CN, Bush MA (2009) Fluorescence and structural degradation in composite resins as a function of temperature. J Forensic Sci 54(2):433–438. https://doi.org/10.1111/j.1556-4029.2008.00968.x

    Article  PubMed  Google Scholar 

  45. Park MY, Lee YK, Lim BS (2007) Influence of fluorescent whitening agent on the fluorescent emission of resin composites. Dent Mater 23(6):731–735. https://doi.org/10.1016/j.dental.2006.06.028

    Article  PubMed  Google Scholar 

  46. Baran GR, O'Brien WJ, Tien TY (1977) Colored emission of rare earth ions in a potassium feldspar glass. J Dent Res 56(11):1323–1329. https://doi.org/10.1177/00220345770560110401

    Article  PubMed  Google Scholar 

  47. Peplinski DR, Wozniak WT, Moser JB (1980) Spectral studies of new luminophors for dental porcelain. J Dent Res 59(9):1501–1506. https://doi.org/10.1177/00220345800590090801

    Article  PubMed  Google Scholar 

  48. Meller C, Schott T (2018) Integrity testing of a smooth surface resin sealant around orthodontic brackets using a new fluorescence-aided identification technique (FIT). Angle Orthod 88(6):765–770. https://doi.org/10.2319/110217-748.1

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lennon AM (2003) Fluorescence-aided caries excavation (FACE) compared to conventional method. Oper Dent 28(4):341–345

    PubMed  Google Scholar 

  50. Walsh LJ (2018) Caries diagnosis aided by fluorescence. In: Akarslan Z (ed) Dental caries - diagnosis, prevention and management. IntechOpen Limited, London. https://doi.org/10.5772/intechopen.71994

    Chapter  Google Scholar 

  51. Judd DB (1951) Report of U.S. secretariat committee on colorimetry and artificial daylight, proceedings of the twelfth session of the CIE, Stockholm. Bureau Central de la CIE, Paris, p 11

  52. Vos JJ (1978) Colorimetric and photometric properties of a 2° fundamental observer. Color Res Appl 3(3):125–128. https://doi.org/10.1002/col.5080030309

    Article  Google Scholar 

  53. Güth JF, Magne P (2016) Optical integration of CAD/CAM materials. Int J Esthet Dent 11(3):394–409

    PubMed  Google Scholar 

Download references

Acknowledgments

Our deepest gratitude to the dental technicians Klaus Engel (Dentalteam Bast & Marquart GmbH) and Martin Wolf (Department of Conservative Dentistry, Periodontology and Endodontology) for their valuable help in the preparation of the specimens analyzed in the present work. We also sincerely thank Mario Möres and the Thermo-Star GmbH for their support in the sintering process carried out for the tested ceramic specimens.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Christian Klein and Christian Meller; data curation, Christian Klein and Christian Meller; formal analysis, Christian Klein; investigation, Christian Klein and Christian Meller; methodology, Christian Klein, Matthias Krespach, Sebastian Spintzyk, and Christian Meller; project administration, Christian Klein and Christian Meller; resources, Diana Wolff, Christiane von Ohle, and Christian Meller; validation, Christian Klein and Christian Meller; visualization, Christian Klein and Christian Meller; writing, original draft, Christian Klein and Christian Meller; writing, review and editing, Christian Klein, Matthias Krespach, Sebastian Spintzyk, Diana Wolff, Christiane von Ohle, and Christian Meller.

Corresponding author

Correspondence to Christian Klein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 26 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, C., Krespach, M., Spintzyk, S. et al. Restorative CAD/CAM materials in dentistry: analysis of their fluorescence properties and the applicability of the fluorescence-aided identification technique (FIT). Clin Oral Invest 25, 4579–4589 (2021). https://doi.org/10.1007/s00784-020-03772-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03772-w

Keywords

Navigation