Skip to main content

Advertisement

Log in

Cefazolin versus ampicillin/sulbactam as an empiric antibiosis in severe odontogenic neck infection descending from the lower jaw—retrospective analysis of 350 cases

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Odontogenic infections descending from the lower jaw may lead to severe health conditions. Commonly, a biphasic treatment of surgical drainage and antibiotic therapy is conducted. The choice of the administered empiric antibiotic agent remains debatable.

Material and methods

Retrospectively, we analyzed 350 medical records of patients who were consecutively treated with odontogenic infections descending from the lower jaw. All patients received surgical drainage and either cefazolin or ampicillin/sulbactam as empiric antibiosis. In particular, the number of secondary operations, infectious parameters, and length of in-hospital stay were investigated.

Results

The most frequently infected space was the perimandibular/buccal space for both groups followed by the submandibular space. Number of revision procedures, early recurrence, and length of stay presented no significant difference between both groups (p > 0.05). Inflammatory parameters (c-reactive protein, leukocytes) similarly decreased in both groups.

Conclusion

Cefazolin targets the majority of the pathogens detected in severe odontogenic neck infections descending from the lower jaw and reveals comparable results to AMP/S in regard to the inflammatory parameters and in-hospital stay.

Clinical relevance

Cefazolin is a feasible empiric antibiosis for odontogenic neck infections descending from the lower jaw if surgical drainage is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abranches J, Zeng L, Kajfasz JK, Palmer SR, Chakraborty B, Wen ZT, Richards VP, Brady LJ, Lemos JA (2018) Biology of Oral Streptococci. Microbiol Spectr 6(5). https://doi.org/10.1128/microbiolspec.GPP1123-0042-2018

  2. AWMF:007-006 (2016) Odontogene Infektionen – Leitlinie. Retrieved June 4th 2020, 2020, from https://www.awmf.org/leitlinien/detail/ll/007-006.html.

  3. Bali RK, Sharma P, Gaba S, Kaur A, Ghanghas P (2015) A review of complications of odontogenic infections. Natl J Maxillofac Surg 6(2):136–143

    PubMed  PubMed Central  Google Scholar 

  4. Bethesda M (2012) LiverTox: clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases.

  5. Bhagania M, Youseff W, Mehra P, Figueroa R (2018) Treatment of odontogenic infections: an analysis of two antibiotic regimens. J Oral Biol Craniofac Res 8(2):78–81

    PubMed  PubMed Central  Google Scholar 

  6. Biasotto M, Pellis T, Cadenaro M, Bevilacqua L, Berlot G, Di Lenarda R (2004) Odontogenic infections and descending necrotising mediastinitis: case report and review of the literature. Int Dent J 54(2):97–102

    PubMed  Google Scholar 

  7. Boyanova L, Kolarov R, Gergova G, Deliverska E, Madjarov J, Marinov M, Mitov I (2006) Anaerobic bacteria in 118 patients with deep-space head and neck infections from the University Hospital of Maxillofacial Surgery, Sofia, Bulgaria. J Med Microbiol 55(9):1285–1289

    PubMed  Google Scholar 

  8. Cannon RB, Houlton JJ, Mendez E, Futran ND (2017) Methods to reduce postoperative surgical site infections after head and neck oncology surgery. Lancet Oncol 18(7):e405–e413

    PubMed  Google Scholar 

  9. Chow AW, Bednorz D (1978) Comparative in vitro activity of newer cephalosporins against anaerobic bacteria. Antimicrob Agents Chemother 14(5):668–671

    PubMed  PubMed Central  Google Scholar 

  10. Chun S, Huh HJ, Lee NY (2015) Species-specific difference in antimicrobial susceptibility among viridans group streptococci. Ann Lab Med 35(2):205–211

    PubMed  PubMed Central  Google Scholar 

  11. Daramola OO, Flanagan CE, Maisel RH, Odland RM (2009) Diagnosis and treatment of deep neck space abscesses. Otolaryngol Head Neck Surg 141(1):123–130

    PubMed  Google Scholar 

  12. DeAngelis AF, Barrowman RA, Harrod R, Nastri AL (2014) Review article: maxillofacial emergencies: oral pain and odontogenic infections. Emerg Med Australas 26(4):336–342

    PubMed  Google Scholar 

  13. Deo PN, Deshmukh R (2019) Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol 23(1):122–128

    PubMed  PubMed Central  Google Scholar 

  14. Heim N, Faron A, Wiedemeyer V, Reich R, Martini M (2017) Microbiology and antibiotic sensitivity of head and neck space infections of odontogenic origin. Differences in inpatient and outpatient management. J Craniomaxillofac Surg 45(10):1731–1735

    PubMed  Google Scholar 

  15. Heim N, Warwas FB, Wiedemeyer V, Wilms CT, Reich RH, Martini M (2019) The role of immediate versus secondary removal of the odontogenic focus in treatment of deep head and neck space infections. A retrospective analysis of 248 patients. Clin Oral Investig 23(7):2921–2927

    PubMed  Google Scholar 

  16. Heim N, Wiedemeyer V, Reich RH, Martini M (2018) The role of C-reactive protein and white blood cell count in the prediction of length of stay in hospital and severity of odontogenic abscess. J Craniomaxillofac Surg 46(12):2220–2226

    PubMed  Google Scholar 

  17. Islam S, Loewenthal MR, Hoffman GR (2008) Use of peripherally inserted central catheters in the management of recalcitrant maxillofacial infection. J Oral Maxillofac Surg 66(2):330–335

    PubMed  Google Scholar 

  18. Katoumas K, Anterriotis D, Fyrgiola M, Lianou V, Triantafylou D, Dimopoulos I (2019) Epidemiological analysis of management of severe odontogenic infections before referral to the emergency department. J Craniomaxillofac Surg 47(8):1292–1299

    PubMed  Google Scholar 

  19. Kuriyama T, Karasawa T, Nakagawa K, Yamamoto E, Nakamura S (2001) Incidence of beta-lactamase production and antimicrobial susceptibility of anaerobic gram-negative rods isolated from pus specimens of orofacial odontogenic infections. Oral Microbiol Immunol 16(1):10–15

    PubMed  Google Scholar 

  20. Kuriyama T, Karasawa T, Nakagawa K, Yamamoto E, Nakamura S (2002) Bacteriology and antimicrobial susceptibility of gram-positive cocci isolated from pus specimens of orofacial odontogenic infections. Oral Microbiol Immunol 17(2):132–135

    PubMed  Google Scholar 

  21. Limeres J, Tomas I, Alvarez M, Diz P (2005) Empirical antimicrobial therapy for odontogenic infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100(3):263–264

    PubMed  Google Scholar 

  22. Löfmark S, Edlund C, Nord CE (2010) Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis 50(Supplement_1):S16–S23

    PubMed  Google Scholar 

  23. Lopez-Gonzalez E, Vitales-Noyola M, Gonzalez-Amaro AM, Mendez-Gonzalez V, Hidalgo-Hurtado A, Rodriguez-Flores R, Pozos-Guillen A (2019) Aerobic and anaerobic microorganisms and antibiotic sensitivity of odontogenic maxillofacial infections. Odontology 107(3):409–417

    PubMed  Google Scholar 

  24. Murphy EC, Frick I-M (2013) Gram-positive anaerobic cocci – commensals and opportunistic pathogens. FEMS Microbiol Rev 37(4):520–553

    PubMed  Google Scholar 

  25. Norman G, Atkinson RA, Smith TA, Rowlands C, Rithalia AD, Crosbie EJ, Dumville JC (2017) Intracavity lavage and wound irrigation for prevention of surgical site infection. Cochrane Database Syst Rev 10(10):CD012234

    PubMed  Google Scholar 

  26. Opitz D, Camerer C, Camerer D-M, Raguse J-D, Menneking H, Hoffmeister B, Adolphs N (2015) Incidence and management of severe odontogenic infections—aretrospective analysis from 2004 to 2011. J Cranio-Maxillofac Surg 43(2):285–289

    Google Scholar 

  27. Rega AJ, Aziz SR, Ziccardi VB (2006) Microbiology and antibiotic sensitivities of head and neck space infections of odontogenic origin. J Oral Maxillofac Surg 64(9):1377–1380

    PubMed  Google Scholar 

  28. Ries K, Levison ME, Kaye D (1973) Clinical and in vitro evaluation of cefazolin, a new cephalosporin antibiotic. Antimicrob Agents Chemother 3(2):168–174

    PubMed  PubMed Central  Google Scholar 

  29. Robertson D, Smith AJ (2009) The microbiology of the acute dental abscess. J Med Microbiol 58(Pt 2):155–162

    PubMed  Google Scholar 

  30. Sánchez R, Mirada E, Arias J, Paño JR, Burgueño M (2011) Severe odontogenic infections: epidemiological, microbiological and therapeutic factors. Med Oral Patol Oral Cir Bucal 16(5):e670–e676

    PubMed  Google Scholar 

  31. Sato FRL, Hajala FAC, Filho FWVF, Moreira RWF, de Moraes M (2009) Eight-year retrospective study of odontogenic origin infections in a postgraduation program on oral and maxillofacial surgery. J Oral Maxillofac Surg 67(5):1092–1097

    PubMed  Google Scholar 

  32. Sebastian A, Antony PG, Jose M, Babu A, Sebastian J, Kunnilathu A (2019) Institutional microbial analysis of odontogenic infections and their empirical antibiotic sensitivity. J Oral Biol Craniofac Res 9(2):133–138

    PubMed  PubMed Central  Google Scholar 

  33. Seppänen L, Lauhio A, Lindqvist C, Suuronen R, Rautemaa R (2008) Analysis of systemic and local odontogenic infection complications requiring hospital care. J Infect 57(2):116–122

    PubMed  Google Scholar 

  34. Shah A, Ramola V, Nautiyal V (2016) Aerobic microbiology and culture sensitivity of head and neck space infection of odontogenic origin. Natl J Maxillofac Surg 7(1):56–61

    PubMed  PubMed Central  Google Scholar 

  35. Shakya N, Sharma D, Newaskar V, Agrawal D, Shrivastava S, Yadav R (2018) Epidemiology, microbiology and antibiotic sensitivity of odontogenic space infections in Central India. J Maxillofac Oral Surg 17(3):324–331

    PubMed  Google Scholar 

  36. Shaoul R, Lahad A, Tamir A, Lanir A, Srugo I (2008) C reactive protein (CRP) as a predictor for true bacteremia in children. Med Sci Monit 14(5):CR255–CR261

    PubMed  Google Scholar 

  37. Shchipkova AY, Nagaraja HN, Kumar PS (2010) Subgingival microbial profiles of smokers with periodontitis. J Dent Res 89(11):1247–1253

    PubMed  PubMed Central  Google Scholar 

  38. Shelburne SA, Davenport MT, Keith DB, Musser JM (2008) The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol 16(7):318–325

    PubMed  PubMed Central  Google Scholar 

  39. Shweta, Prakash SK (2013) Dental abscess: a microbiological review. Dent Res J (Isfahan) 10(5):585–591

    Google Scholar 

  40. Siqueira JF Jr, Rocas IN (2004) Treponema species associated with abscesses of endodontic origin. Oral Microbiol Immunol 19(5):336–339

    PubMed  Google Scholar 

  41. Steinkeler AR, Granquist E (2014) Odontogenic infections: early incision and drainage decreases length of hospitalization. J Oral Maxillofac Surg 72(9, Supplement):e83–e84

    Google Scholar 

  42. Tent PA, Juncar RI, Onisor F, Bran S, Harangus A, Juncar M (2019) The pathogenic microbial flora and its antibiotic susceptibility pattern in odontogenic infections. Drug Metab Rev 51(3):340–355

    PubMed  Google Scholar 

  43. Tritapepe R, Di Padova C (2002) Excision and primary closure of pilonidal sinus using a drain for antiseptic wound flushing. Am J Surg 183(2):209–211

    PubMed  Google Scholar 

  44. Tuohy M, Washington JA (1997) Antimicrobial susceptibility of viridans group streptococci. Diagn Microbiol Infect Dis 29(4):277–280. https://doi.org/10.1016/s0732-8893(97)00140-5

  45. Unkila-Kallio L, Kallio MJ, Peltola H (1994) The usefulness of C-reactive protein levels in the identification of concurrent septic arthritis in children who have acute hematogenous osteomyelitis. A comparison with the usefulness of the erythrocyte sedimentation rate and the white blood-cell count. J Bone Joint Surg Am 76(6):848–853

    PubMed  Google Scholar 

  46. Velhonoja J, Laaveri M, Soukka T, Irjala H, Kinnunen I (2019) Deep neck space infections: an upward trend and changing characteristics. Eur Arch Otorhinolaryngol 277(3):863–872. https://doi.org/10.1007/s00405-019-05742-9

  47. Walia IS, Borle RM, Mehendiratta D, Yadav AO (2014) Microbiology and antibiotic sensitivity of head and neck space infections of odontogenic origin. J Maxillofac Oral Surg 13(1):16–21

    PubMed  Google Scholar 

  48. Wang LF, Kuo WR, Tsai SM, Huang KJ (2003) Characterizations of life-threatening deep cervical space infections: a review of one hundred ninety-six cases. Am J Otolaryngol 24(2):111–117

    PubMed  Google Scholar 

  49. Warnke PH, Becker ST, Springer IN, Haerle F, Ullmann U, Russo PA, Wiltfang J, Fickenscher H, Schubert S (2008) Penicillin compared with other advanced broad spectrum antibiotics regarding antibacterial activity against oral pathogens isolated from odontogenic abscesses. J Craniomaxillofac Surg 36(8):462–467

    PubMed  Google Scholar 

  50. Weise H, Naros A, Weise C, Reinert S, Hoefert S (2019) Severe odontogenic infections with septic progress - a constant and increasing challenge: a retrospective analysis. BMC Oral Health 19(1):173–173

    PubMed  PubMed Central  Google Scholar 

  51. Yumoto H, Hirota K, Hirao K, Ninomiya M, Murakami K, Fujii H, Miyake Y (2019) The pathogenic factors from oral streptococci for systemic diseases. Int J Mol Sci 20(18):4571

    PubMed Central  Google Scholar 

  52. Zirk M, Buller J, Goeddertz P, Rothamel D, Dreiseidler T, Zoller JE, Kreppel M (2016) Empiric systemic antibiotics for hospitalized patients with severe odontogenic infections. J Craniomaxillofac Surg 44:1081–1088

    PubMed  Google Scholar 

  53. Zirk M, Dreiseidler T, Pohl M, Rothamel D, Buller J, Peters F, Zoller JE, Kreppel M (2017) Odontogenic sinusitis maxillaris: a retrospective study of 121 cases with surgical intervention. J Craniomaxillofac Surg 45(4):520–525

    PubMed  Google Scholar 

  54. Zirk M, Wenzel C, Buller J, Zoller JE, Zinser M, Peters F (2018) Microbial diversity in infections of patients with medication-related osteonecrosis of the jaw. Clin Oral Investig 23(5):2143–2151. https://doi.org/10.1007/s00784-018-2655-z

  55. Zirk M, Zalesski A, Peters F, Kreppel M, Zinser M, Zoller JE (2019) Oral recipient site infections in reconstructive surgery - impact of the graft itself and the perioperative antibiosis. Clin Oral Investig. 24(4):1599–1605. https://doi.org/10.1007/s00784-019-03078-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Zirk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Local ethics board exempts this study from a specific ethic vote due to its pure retrospective nature.

Informed consent

For this type of study (retrospective study), formal consent is not required. Local ethic committee exempts this study from a specific ethic vote due to its pure retrospective nature.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zirk, M., Zoeller, J.E., Peters, F. et al. Cefazolin versus ampicillin/sulbactam as an empiric antibiosis in severe odontogenic neck infection descending from the lower jaw—retrospective analysis of 350 cases. Clin Oral Invest 25, 563–570 (2021). https://doi.org/10.1007/s00784-020-03492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03492-1

Keywords

Navigation