Skip to main content

Advertisement

Log in

Lipopolysaccharide inhibits osteogenic differentiation of periodontal ligament stem cells partially through toll-like receptor 4-mediated ephrinB2 downregulation

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to investigate the possible crosstalk between LPS/toll-like receptor 4 (TLR4) and ephrinB2 signaling in mediating osteogenic differentiation of PDLSCs.

Materials and methods

Human periodontal ligament stem cells (hPDLSCs) were harvested and treated with different concentrations of LPS under osteogenic induction. qPCR, alkaline phosphatase (ALP) staining, and Alizarin Red S staining were performed to assess osteogenic gene expression, ALP activity, and mineralized nodule formation. EphrinB2 mRNA and protein expressions after LPS treatment were also determined. To explore the role of ephrinB2 in LPS-impaired osteogenic differentiation of hPDLSCs, hPDLSCs were stimulated with ephrinB2-Fc or transfected with ephrinB2 lentivirus, and then, the osteogenic differentiation capacity was evaluated.

Results

LPS inhibited osteogenic differentiation of hPDLSCs and downregulated ephrinB2 expression in hPDLSCs during osteogenic differentiation. Blockage of TLR4 partially reversed LPS-induced decrease in ephrinB2 expression. EphrinB2-Fc promoted mineralized nodule formation and increased the expression of ALP, osteocalcin (OCN), and bone morphogenetic protein 2 (BMP2) in hPDLSCs. EphrinB2-overexpressing hPDLSCs treated with LPS expressed higher ALP and BMP2 mRNA and higher ALP activity and showed more mineralized nodule formation, when compared with wide-type hPDLSCs treated with LPS.

Conclusions

Our data suggested that LPS decreased the osteogenic differentiation capacity of hPDLSCs partially through downregulation of ephrinB2 expression via LPS/TLR4 signaling. Upregulation of ephrinB2 partially reversed the impaired osteogenic potential of hPDLSCs induced by LPS.

Clinical relevance

Our results provided a new insight of mechanism underling LPS-mediated osteogenic differentiation inhibition of PDLSCs and clarified a potential target for the management of periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3
Fig.4
Fig.5

Similar content being viewed by others

References

  1. Kinane DF (2001) Causation and pathogenesis of periodontal disease. Periodontol 2000(25):8–20

    Article  Google Scholar 

  2. Feng Z (2000) Weinberg a (2006) role of bacteria in health and disease of periodontal tissues. Periodontol 40:50–76

    Article  Google Scholar 

  3. Jones KJ, Ekhlassi S, Montufar-Solis D, Klein JR, Schaefer JS (2010) Differential cytokine patterns in mouse macrophages and gingival fibroblasts after stimulation with porphyromonas gingivalis or Escherichia coli lipopolysaccharide. J Periodontol 81:1850–1857

    Article  PubMed  PubMed Central  Google Scholar 

  4. Morandini AC, Sipert CR, Gasparoto TH, Greghi SL, Passanezi E, Rezende ML, Sant’ana AP, Campanelli AP, Garlet GP, Santos CF (2010) Differential production of macrophage inflammatory protein-1alpha, stromal-derived factor-1, and IL-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide from P. gingivalis. J Periodontol 81:310–317

    Article  PubMed  Google Scholar 

  5. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–176

    Article  PubMed  Google Scholar 

  6. Darveau RP (2010) Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol 8:481–490

    Article  PubMed  Google Scholar 

  7. Zhu W, Liang M (2015) Periodontal ligament stem cells: current status, concerns, and future prospects. Stem Cells Int 2015:972313

    PubMed  PubMed Central  Google Scholar 

  8. Liu YC, Lerner UH, Teng YT (2010) Cytokine responses against periodontal infection: protective and destructive roles. Periodontol 2000 52:163–206

  9. Wada N, Maeda H, Tanabe K, Tsuda E, Yano K, Nakamuta H, Akamine A (2001) Periodontal ligament cells secrete the factor that inhibits osteoclastic differentiation and function: the factor is osteoprotegerin/osteoclastogenesis inhibitory factor. J Periodontal Res 36:56–63

    Article  PubMed  Google Scholar 

  10. Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, Gronthos S, Shi S, Wang S (2008) Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 26:1065–1073

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kunze M, Huber A, Krajewski A, Lowden E, Schuhmann N, Buening H, Hallek M, Noack M, Perabo L (2009) Efficient gene transfer to periodontal ligament cells and human gingival fibroblasts by adeno-associated virus vectors. J Dent 37:502–508

    Article  PubMed  Google Scholar 

  12. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806

    Article  PubMed  PubMed Central  Google Scholar 

  13. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  PubMed  Google Scholar 

  14. Han J, Menicanin D, Marino V, Ge S, Mrozik K, Gronthos S, Bartold PM (2014) Assessment of the regenerative potential of allogeneic periodontal ligament stem cells in a rodent periodontal defect model. J Periodontal Res 49:333–345

    Article  PubMed  Google Scholar 

  15. Yu N, Oortgiesen DA, Bronckers AL, Yang F, Walboomers XF, Jansen JA (2013) Enhanced periodontal tissue regeneration by periodontal cell implantation. J Clin Periodontol 40:698–706

    Article  PubMed  Google Scholar 

  16. Liu Y, Liu W, Hu C, Xue Z, Wang G, Ding B, Luo H, Tang L, Kong X, Chen X, Liu N, Ding Y, Jin Y (2011) MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells 29:1804–1816

    Article  PubMed  Google Scholar 

  17. Yang N, Li Y, Wang G, Ding Y, Jin Y, Xu Y (2017) Tumor necrosis factor-alpha suppresses adipogenic and osteogenic differentiation of human periodontal ligament stem cell by inhibiting miR-21/Spry1 functional axis. Differentiation 97:33–43

    Article  PubMed  Google Scholar 

  18. Mao CY, Wang YG, Zhang X, Zheng XY, Tang TT, Lu EY (2016) Double-edged-sword effect of IL-1beta on the osteogenesis of periodontal ligament stem cells via crosstalk between the NF-kappaB, MAPK and BMP/Smad signaling pathways. Cell Death Dis 7:e2296

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu H, Zheng J, Zheng T, Wang P (2019) Exendin-4 regulates Wnt and NF-kappaB signaling in lipopolysaccharide-induced human periodontal ligament stem cells to promote osteogenic differentiation. Int Immunopharmacol 75:105801

    Article  PubMed  Google Scholar 

  20. Li C, Li B, Dong Z, Gao L, He X, Liao L, Hu C, Wang Q, Jin Y (2014) Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through toll-like receptor 4 mediated nuclear factor kappaB pathway. Stem Cell Res Ther 5:67

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kukolj T, Trivanović D, Djordjević IO, Mojsilović S, Krstić J, Obradović H, Janković S, Santibanez JF, Jauković A, Bugarski D (2018) Lipopolysaccharide can modify differentiation and immunomodulatory potential of periodontal ligament stem cells via ERK1,2 signaling. J Cell Physiol 233:447–462

    Article  PubMed  Google Scholar 

  22. Kato H, Taguchi Y, Tominaga K, Umeda M, Tanaka A (2014) Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch Oral Biol 59:167–175

    Article  PubMed  Google Scholar 

  23. Albiero ML, Amorim BR, Martins L, Casati MZ, Sallum EA, Nociti FH Jr, Silvério KG (2015) Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern. J Appl Oral Sci 23:145–152

    Article  PubMed  PubMed Central  Google Scholar 

  24. Albiero ML, Amorim BR, Casati MZ, Sallum EA, Nociti FHJ, Silverio KG (2017) Osteogenic potential of periodontal ligament stem cells are unaffected after exposure to lipopolysaccharides. Braz Oral Res 31:e17

    Article  PubMed  Google Scholar 

  25. Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4:111–121

    Article  PubMed  Google Scholar 

  26. Allan EH, Häusler KD, Wei T, Gooi JH, Quinn JM, Crimeen-Irwin B, Pompolo S, Sims NA, Gillespie MT, Onyia JE, Martin TJ. EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts. J Bone Miner Res 23:1170–1181

  27. Martin TJ, Allan EH, Ho PW, Gooi JH, Quinn JM, Gillespie MT, Krasnoperov V, Sims NA (2010) Communication between ephrinB2 and EphB4 within the osteoblast lineage. Adv Exp Med Biol 658:51–60

    Article  PubMed  Google Scholar 

  28. Toda H, Yamamoto M, Uyama H, Tabata Y (2017) Effect of hydrogel elasticity and ephrinB2-immobilized manner on Runx2 expression of human mesenchymal stem cells. Acta Biomater 58:312–322

    Article  PubMed  Google Scholar 

  29. Zhang F, Zhang Z, Sun D, Dong S, Xu J, Dai F (2015) EphB4 promotes osteogenesis of CTLA4-modified bone marrow-derived mesenchymal stem cells through cross talk with Wnt pathway in xenotransplantation. Tissue Eng Part A 21:2404–2416

    Article  PubMed  Google Scholar 

  30. Benson MD, Opperman LA, Westerlund J, Fernandez CR, San Miguel S, Henkemeyer M, Chenaux G (2012) Ephrin-B stimulation of calvarial bone formation. Dev Dyn 241:1901–1910

    Article  PubMed  Google Scholar 

  31. Hou J, Chen Y, Meng X, Shi C, Li C, Sun H (2014) Compressive force regulates ephrinB2 and EphB4 in osteoblasts and osteoclasts contributing to alveolar bone resorption during experimental tooth movement. Korean J Orthod 44:320–329

    Article  PubMed  PubMed Central  Google Scholar 

  32. Diercke K, Kohl A, Lux CJ, Erber R (2011) Strain-dependent up-regulation of ephrin-B2 protein in periodontal ligament fibroblasts contributes to osteogenesis during tooth movement. J Biol Chem 286:37651–37664

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhu SY, Wang PL, Liao CS, Yang YQ, Yuan CY, Wang S, Dissanayaka WL, Heng BC, Zhang CF (2017) Transgenic expression of ephrinB2 in periodontal ligament stem cells (PDLSCs) modulates osteogenic differentiation via signaling crosstalk between ephrinB2 and EphB4 in PDLSCs and between PDLSCs and pre-osteoblasts within co-culture. J Periodontal Res 52:562–573

    Article  PubMed  Google Scholar 

  34. Bassir SH, Wisitrasameewong W, Raanan J, Ghaffarigarakani S, Chung J, Freire M, Andrada LC, Intini G (2016) Potential for stem cell-based periodontal therapy. J Cell Physiol 231:50–61

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wilson M (1995) Biological activities of lipopolysaccharides from oral bacteria and their relevance to the pathogenesis of chronic periodontitis. Sci Prog 78:19–34

    PubMed  Google Scholar 

  36. Hienz SAPS, Ivanovski S (2015) Mechanisms of bone resorption in periodontitis. J Immunol Res 2015:615486

    Article  PubMed  PubMed Central  Google Scholar 

  37. Page RC (1991) The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res 26:230–242

    Article  PubMed  Google Scholar 

  38. He W, Wang Z, Luo Z, Yu Q, Jiang Y, Zhang Y, Zhou Z, Smith AJ, Cooper PR (2015) LPS promote the odontoblastic differentiation of human dental pulp stem cells via MAPK, but not NF-KB signaling pathway. J Cell Physiol 230:554–561

    Article  PubMed  Google Scholar 

  39. Wu M, Ai W, Chen L, Zhao S, Liu E (2016) Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med 37:565–574

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sun J, Sun B, Wang W, Han X, Liu H, Du J, Feng W, Liu B, Amizuka N, Li M (2016) Histochemical examination of the effects of high-dose 1,25(OH)2D3 on bone remodeling in young growing rats. J Mol Histol 47:389–399

    Article  PubMed  Google Scholar 

  41. Pennisi A, Ling W, Li X, Khan S, Shaughnessy JD Jr, Barlogie B, Yaccoby S (2009) The ephrinB2/EphB4 axis is dysregulated in osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth. Blood 114:1803–1812

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li C, Shi C, Kim J, Chen Y, Ni S, Jiang L, Zheng C, Li D, Hou J, Taichman RS, Sun H (2015) Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling. J Dent Res 94:455–463

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, Wang XC, Bao XF, Hu M, Yu WX (2014) Effects of Porphyromonas gingivalis lipopolysaccharide on osteoblast-osteoclast bidirectional EphB4-EphrinB2 signaling. Exp Ther Med 7:80–84

    Article  PubMed  Google Scholar 

  44. Beutler B (2004) Inferences, questions and possibilities in toll-like receptor signaling. Nature 430:257–263

    Article  PubMed  Google Scholar 

  45. He W, Wang Z, Luo Z, Yu Q, Jiang Y, Zhang Y, Zhou Z, Smith AJ, Cooper PR.LPS (2015) Promote the odontoblastic differentiation of human dental pulp stem cells via MAPK signaling pathway. J Cell Physiol 230:554–561

  46. Wang LM, Zhang J, Sun QF, Yang CZ, Yang PS (2018) Tumor necrosis factor-alpha inhibits osteogenic differentiation of pre-osteoblasts by downregulation of EphB4 signaling via activated nuclear factor-kappaB signaling pathway. J Periodontal Res 53:66–72

    Article  PubMed  Google Scholar 

  47. Irie N, Takada Y, Watanabe Y, Matsuzaki Y, Naruse C, Asano M, Iwakura Y, Suda T, Matsuo K (2009) Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem 284:14637–14644

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sen S, Zingler S, Lux CJ, Erber R (2015) Compression induces Ephrin-A2 in PDL fibroblasts via c-fos. J Dent Res 94:464–472

    Article  PubMed  PubMed Central  Google Scholar 

  49. Horng T, Medzhitov R (2001) TIRAP: an adapter molecule in the toll signaling pathway. Nat Immunol 2:835–841

    Article  PubMed  Google Scholar 

  50. Heng BC, Wang S, Gong T, Xu J, Yuan C, Zhang C (2018) EphrinB2 signaling enhances osteogenic/odontogenic differentiation of human dental pulp stem cells. Arch Oral Biol 87:62–71

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Nature Science Foundation of China (NSFC) (No. 81700954).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongxiang Liu or Penglai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were performed after receiving approval from the Ethics Committee of Xuzhou Medical University (20161108).

Informed consent

hPDLSCs were isolated from 10 healthy adults with their consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yuan, C., Geng, T. et al. Lipopolysaccharide inhibits osteogenic differentiation of periodontal ligament stem cells partially through toll-like receptor 4-mediated ephrinB2 downregulation. Clin Oral Invest 24, 3407–3416 (2020). https://doi.org/10.1007/s00784-020-03211-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03211-w

Keywords

Navigation