Skip to main content

Advertisement

Log in

Shear bond strength and interface analysis between a resin composite and a recent high-viscous glass ionomer cement bonded with various adhesive systems

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

This study investigated the shear bond strength (SBS) and interface between a resin composite and a new high-viscous glass ionomer cement (HV-GIC), a HV-GIC, a resin-modified glass ionomer cement (RM-GIC), a bulk-fill flowable composite, and a regular flowable composite bonded with various adhesive systems.

Methods and materials

A resin composite (Filtek Z350) was bonded to a new HV-GIC (EQUIA Forte Fil) using various adhesive systems, including a universal adhesive in self-etch and etch-and-rinse mode (Scotchbond Universal), a two-step etch-and-rinse adhesive (Scotchbond 1-XT), a one-step self-etch adhesive (Optibond All-in-one) tested also after silane application (Monobond Plus), and a coating material (EQUIA Forte Coat). The resin composite was also bonded to a HV-GIC (Fuji IX GP), a RM-GIC (Fuji II LC), a bulk-fill flowable composite (SDR), and a regular flowable composite (Tetric Evo Flow) with the universal adhesive in self-etch mode (Scotchbond Universal). Two-way ANOVA followed by Dunnett’s post hoc test was used to investigate the difference in SBS. Failures were analyzed by chi-square test. Bonding interfaces were examined by environmental scanning electron microscopy (E-SEM).

Results

SBS to EQUIA Forte Fil was significantly lower with Scotchbond 1-XT than with all other adhesive systems. By using Scotchbond Universal with the self-etch technique, the SBS to EQUIA Forte Fil was significantly higher than the SBS to Fuji IX GP and significantly lower than the SBS to Fuji II LC, SDR, and Tetric Evo Flow. E-SEM images showed an intimate contact at all interfaces examined.

Conclusion

EQUIA Forte Fil showed satisfactory SBS and interfaces with all adhesives tested.

Clinical relevance

Bonding between the resin composite and HV-GIC can be achieved using a universal adhesive in self-etch mode, an easy-to-use adhesive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dietschi D, Spreafico R (2015) Evidence-based concepts and procedures for bonded inlays and onlays. Part I. Historical perspectives and clinical rationale for a biosubstitutive approach. Int J Esthet Dent 10:210–227

    PubMed  Google Scholar 

  2. Rocca GT, Krejci I (2007) Bonded indirect restorations for posterior teeth: from cavity preparation to provisionalization. Quintessence Int 38:371–379

    PubMed  Google Scholar 

  3. Zaruba M, Göhring TN, Wegehaupt FJ, Attin T (2013) Influence of a proximal margin elevation technique on marginal adaptation of ceramic inlays. Acta Odontol Scand 71:317–324. https://doi.org/10.3109/00016357.2012.680905

    Article  PubMed  Google Scholar 

  4. Fragkou S, Nikolaidis A, Tsiantou D, Achilias D, Kotsanos N (2013) Tensile bond characteristics between composite resin and resin-modified glass-ionomer restoratives used in the open-sandwich technique. Eur Arch Paediatr Dent 14:239–245. https://doi.org/10.1007/s40368-013-0055-2

    Article  PubMed  Google Scholar 

  5. Andersson-Wenckert IE, van Dijken JW, Kieri C (2004) Durability of extensive Class II open-sandwich restorations with a resin-modified glass ionomer cement after 6 years. Am J Dent 17:43–50

  6. Dietschi D, Spreafico R (1998) Current clinical concepts for adhesive cementation of tooth-colored posterior restorations. Pract Periodontics Aesthetic Dent 10:47–54 quiz 56

    Google Scholar 

  7. Kielbassa AM, Philipp F (2015) Restoring proximal cavities of molars using the proximal box elevation technique: systematic review and report of a case. Quintessence Int 46:751–764. https://doi.org/10.3290/j.qi.a34459

    Article  PubMed  Google Scholar 

  8. Ilgenstein I, Zitzmann NU, Bühler J, Wegehaupt FJ, Attin T, Weiger R, Krastl G (2015) Influence of proximal box elevation on the marginal quality and fracture behavior of root-filled molars restored with CAD/CAM ceramic or composite onlays. Clin Oral Investig 19:1021–1028. https://doi.org/10.1007/s00784-014-1325-z

    Article  PubMed  Google Scholar 

  9. Dietschi D, Olsburgh S, Krejci I, Davidson C (2003) In vitro evaluation of marginal and internal adaptation after occlusal stressing of indirect class II composite restorations with different resinous bases. Eur J Oral Sci 111:73–80

    Article  PubMed  Google Scholar 

  10. Marchesi G, Spreafico R, Frassetto A, Turco G, Di Lenarda R, Cadenaro M, Breschi L (2014) Cervical margin-relocation of CAD/CAM lithium disilicate ceramic crown using resin-composite. Dent Mater 30:e14. doi: https://doi.org/10.1016/j.dental.2014.08.029

  11. Chuang SF, Liu JK, Chao CC, Liao FP, Chen YH (2001) Effects of flowable composite lining and operator experience on microleakage and internal voids in class II composite restorations. J Prosthet Dent 85:177–183. https://doi.org/10.1067/mpr.2001.113780

    Article  PubMed  Google Scholar 

  12. Boruziniat A, Gharaee S, Sarraf Shirazi A, Majidinia S, Vatanpour M (2016) Evaluation of the efficacy of flowable composite as lining material on microleakage of composite resin restorations: a systematic review and meta-analysis. Quintessence Int 47:93–101. https://doi.org/10.3290/j.qi.a35260

    Article  PubMed  Google Scholar 

  13. Hernandes NMAP, Catelan A, Soares GP, Ambrosano GM, Lima DA, Marchi GM, Martins LR, Aguiar FH (2014) Influence of flowable composite and restorative technique on microleakage of class II restorations. J Investig Clin Dent 5:283–288. https://doi.org/10.1111/jicd.12058

    Article  PubMed  Google Scholar 

  14. Baroudi K, Rodrigues JC (2015) Flowable resin composites: a systematic review and clinical considerations. J Clin Diagn Res JCDR 9:ZE18–ZE24. https://doi.org/10.7860/JCDR/2015/12294.6129

    Article  PubMed  Google Scholar 

  15. Baroudi K, Silikas N, Watts DC (2009) In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites. Int J Paediatr Dent 19:48–54. https://doi.org/10.1111/j.1365-263X.2007.00899.x

    Article  PubMed  Google Scholar 

  16. Koubi S, Raskin A, Dejou J, About I, Tassery H, Camps J, Proust JP (2009) Effect of dual cure composite as dentin substitute on marginal integrity of class II open-sandwich restorations. Oper Dent 34:150–156. https://doi.org/10.2341/08-29

    Article  PubMed  Google Scholar 

  17. Roggendorf MJ, Krämer N, Dippold C, Vosen VE, Naumann M, Jablonski-Momeni A, Frankenberger R (2012) Effect of proximal box elevation with resin composite on marginal quality of resin composite inlays in vitro. J Dent 40:1068–1073. https://doi.org/10.1016/j.jdent.2012.08.019

    Article  PubMed  Google Scholar 

  18. Heintze SD, Rousson V (2012) Clinical effectiveness of direct class II restorations - a meta-analysis. J Adhes Dent 14:407–431. https://doi.org/10.3290/j.jad.a28390

    Article  PubMed  Google Scholar 

  19. Khoroushi M, Keshani F (2013) A review of glass-ionomers: from conventional glass-ionomer to bioactive glass-ionomer. Dent Res J (Isfahan) 10:411–420

    Google Scholar 

  20. Lazaridou D, Belli R, Krämer N, Petschelt A, Lohbauer U (2015) Dental materials for primary dentition: are they suitable for occlusal restorations? A two-body wear study. Eur Arch Paediatr Dent 16:165–172. https://doi.org/10.1007/s40368-014-0151-y

    Article  PubMed  Google Scholar 

  21. Gurgan S, Kutuk ZB, Ergin E, Oztas SS, Cakir FY (2015) Four-year randomized clinical trial to evaluate the clinical performance of a glass ionomer restorative system. Oper Dent 40:134–143. https://doi.org/10.2341/13-239-C

    Article  PubMed  Google Scholar 

  22. Fukegawa D, Hayakawa S, Yoshida Y, Suzuki K, Osaka A, Van Meerbeek B (2006) Chemical interaction of phosphoric acid ester with hydroxyapatite. J Dent Res 85:941–944. https://doi.org/10.1177/154405910608501014

    Article  PubMed  Google Scholar 

  23. Kadoma Y (2002) Surface treatment agent for dental metals using a thiirane monomer and a phosphoric acid monomer. Dent Mater J 21:156–169. https://doi.org/10.4012/dmj.21.156

    Article  PubMed  Google Scholar 

  24. Chen L, Suh BI, Brown D, Chen X (2012) Bonding of primed zirconia ceramics: evidence of chemical bonding and improved bond strengths. Am J Dent 25:103–108

    PubMed  Google Scholar 

  25. Kim RJ, Woo JS, Lee IB, Yi YA, Hwang JY, Seo DG (2015) Performance of universal adhesives on bonding to leucite-reinforced ceramic. Biomater Res 19:11. https://doi.org/10.1186/s40824-015-0035-1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee Y, Kim JH, Woo JS, Yi YA, Hwang JY, Seo DG (2015) Analysis of self-adhesive resin cement microshear bond strength on leucite-reinforced glass-ceramic with/without pure silane primer or universal adhesive surface treatment. Biomed Res Int 2015:361893. https://doi.org/10.1155/2015/361893

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yoshida Y, Nagakane K, Fukuda R, Nakayama Y, Okazaki M, Shintani H, Inoue S, Tagawa Y, Suzuki K, De Munck J, Van Meerbeek B (2004) Comparative study on adhesive performance of functional monomers. J Dent Res 83:454–458. https://doi.org/10.1177/154405910408300604

    Article  PubMed  Google Scholar 

  28. Çolak H, Tokay U, Uzgur R, Uzgur Z, Ercan E, Hamidi MM (2016) The effect of different adhesives and setting times on bond strength between Biodentine and composite. J Appl Biomater Funct Mater 14:e217–e222. https://doi.org/10.5301/jabfm.5000266

    Article  PubMed  Google Scholar 

  29. Odabaş ME, Bani M, Tirali RE (2013) Shear bond strengths of different adhesive systems to biodentine. Sci World J 2013:626103–626105. https://doi.org/10.1155/2013/626103

    Article  Google Scholar 

  30. Zhang Y, Burrow MF, Palamara JEA, Thomas CDL (2011) Bonding to glass ionomer cements using resin-based adhesives. Oper Dent 36:618–625. https://doi.org/10.2341/10-140-L

    Article  PubMed  Google Scholar 

  31. Wexler G, Beech DR (1988) Bonding of a composite restorative material to etched glass ionomer cement. Aust Dent J 33:313–318. https://doi.org/10.1111/j.1834-7819.1988.tb04185.x

    Article  PubMed  Google Scholar 

  32. Hinoura K, Moore BK, Phillips RW (1988) Tensile bond strength between glass ionomer cements and composite resins. J Am Dent Assoc 114:167–172. https://doi.org/10.14219/jada.archive.1987.0021

    Article  Google Scholar 

  33. Kandaswamy D, Rajan KJ, Venkateshbabu N, Porkodi I (2012) Shear bond strength evaluation of resin composite bonded to glass-ionomer cement using self-etching bonding agents with different pH: in vitro study. J Conserv Dent JCD 15:27–31. https://doi.org/10.4103/0972-0707.92602

    Article  PubMed  Google Scholar 

  34. Nurrohman H, Nakashima S, Takagaki T, Sadr A, Nikaido T, Asakawa Y, Uo M, Marshall SJ, Tagami J (2015) Immobilization of phosphate monomers on collagen induces biomimetic mineralization. Biomed Mater Eng 25:89–99. https://doi.org/10.3233/BME-141243

    Article  PubMed  Google Scholar 

  35. Shimazu K, Karibe H, Ogata K (2014) Effect of artificial saliva contamination on adhesion of dental restorative materials. Dent Mater J 33:545–550. https://doi.org/10.4012/dmj.2014-007

    Article  PubMed  Google Scholar 

  36. Park J, Chang J, Ferracane J, Lee IB (2008) How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dent Mater 24:1501–1505. https://doi.org/10.1016/j.dental.2008.03.013

    Article  PubMed  Google Scholar 

  37. Cebe MA, Cebe F, Cengiz MF, Cetin AR, Arpag OF, Ozturk B (2015) Elution of monomer from different bulk fill dental composite resins. Dent Mater 31:e141–e149. https://doi.org/10.1016/j.dental.2015.04.008

    Article  PubMed  Google Scholar 

  38. Dursun E, Fron-Chabouis H, Attal JP, Raskin A (2016) Bisphenol a release: survey of the composition of dental composite resins. Open Dent J 10:446–453. https://doi.org/10.2174/1874210601610010446

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sideridou ID, Achilias DS (2005) Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res B Appl Biomater 74:617–626. https://doi.org/10.1002/jbm.b.30252

    Article  PubMed  Google Scholar 

  40. Calesini G, Micarelli C, Fabianelli A, Papacchini F (2014) The evaluation of marginal gap with and without optical aids: clinicians versus technicians. Int J Prosthodont 27:161–164. https://doi.org/10.11607/ijp.3649

    Article  PubMed  Google Scholar 

  41. Mamoun J (2015) Preparing and restoring composite resin restorations. The advantage of high magnification loupes or the dental surgical operating microscope. N Y State Dent J 81:18–23

    PubMed  Google Scholar 

  42. Magne P (2014) IDS: Immediate Dentin Sealing (IDS) for tooth preparations. J Adhes Dent 16:594. https://doi.org/10.3290/j.jad.a33324

    Article  PubMed  Google Scholar 

  43. Panahandeh N, Torabzadeh H, Ghassemi A, Mahdian M, Akbarzadeh Bagheban A, Moayyedi S (2015) Effect of bonding application time on bond strength of composite resin to glass ionomer cement. J Dent (Tehran) 12:859–867

    Google Scholar 

  44. Beriat NC, Nalbant D (2009) Water absorption and HEMA release of resin-modified glass-ionomers. Eur J Dent 3:267–272

    PubMed  PubMed Central  Google Scholar 

  45. Cattani-Lorente MA, Dupuis V, Payan J, Moya F, Meyer JM (1999) Effect of water on the physical properties of resin-modified glass ionomer cements. Dent Mater 15:71–78. https://doi.org/10.1016/S0109-5641(99)00016-0

  46. Karaoğlanoğlu S, Akgül N, Ozdabak HN, Akgül HM (2009) Effectiveness of surface protection for glass-ionomer, resin-modified glass-ionomer and polyacid-modified composite resins. Dent Mater J 28:96–101. https://doi.org/10.4012/dmj.28.96

    Article  PubMed  Google Scholar 

  47. Gopikrishna V, Abarajithan M, Krithikadatta J, Kandaswamy D (2009) Shear bond strength evaluation of resin composite bonded to GIC using three different adhesives. Oper Dent 34:467–471. https://doi.org/10.2341/08-009-L

    Article  PubMed  Google Scholar 

  48. Tanumiharja M, Burrow MF, Tyas MJ (2000) Microtensile bond strengths of glass ionomer (polyalkenoate) cements to dentine using four conditioners. J Dent 28:361–366. https://doi.org/10.1016/S0300-5712(00)00009-9

    Article  PubMed  Google Scholar 

  49. Knight GM, McIntyre JM, Mulyani (2006) Bond strengths between composite resin and auto cure glass ionomer cement using the co-cure technique. Aust Dent J 51:175–179. https://doi.org/10.1111/j.1834-7819.2006.tb00423.x

    Article  PubMed  Google Scholar 

  50. Coutinho E, Yoshida Y, Inoue S, Fukuda R, Snauwaert J, Nakayama Y, De Munck J, Lambrechts P, Suzuki K, Van Meerbeek B (2007) Gel phase formation at resin-modified glass-ionomer/tooth interfaces. J Dent Res 86:656–661. https://doi.org/10.1177/154405910708600714

    Article  PubMed  Google Scholar 

  51. Tay KCY, Loushine BA, Oxford C, Kapur R, Primus CM, Gutmann JL, Loushine RJ, Pashley DH, Tay FR (2007) In vitro evaluation of a Ceramicrete-based root-end filling material. J Endod 33:1438–1443. https://doi.org/10.1016/j.joen.2007.07.038

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Dursun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francois, P., Vennat, E., Le Goff, S. et al. Shear bond strength and interface analysis between a resin composite and a recent high-viscous glass ionomer cement bonded with various adhesive systems. Clin Oral Invest 23, 2599–2608 (2019). https://doi.org/10.1007/s00784-018-2678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2678-5

Keywords

Navigation