Skip to main content

Advertisement

Log in

Influence of subcrestal implant placement compared with equicrestal position on the peri-implant hard and soft tissues around platform-switched implants: a systematic review and meta-analysis

  • Review
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Aim

The aim of this article is to systematically review the effect of subcrestal implant placement compared with equicrestal position on hard and soft tissues around dental implants with platform switch.

Material and methods

A manual and electronic search (National Library of Medicine and Cochrane Central Register of Controlled Trials) was performed for animal and human studies published up to December 2016. Primary outcome variable was marginal bone level (MBL) and secondary outcomes were crestal bone level (CBL), soft tissue dimensions (barrier epithelium, connective tissue, and peri-implant mucosa), and changes in the position of soft tissue margin. For primary and secondary outcomes, data reporting mean values and standard deviations of each study were extracted and weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated.

Results

A total of 14 publications were included (7 human studies and 7 animal investigations). The results from the meta-analyses have shown that subcrestal implants, when compared with implants placed in an equicrestal position, exhibited less MBL changes (human studies: WMD = − 0.18 mm; 95% CI = − 1.31 to 0.95; P = 0.75; animal studies: WMD = − 0.45 mm; 95% CI = − 0.66 to − 0.24; P < 0.001). Furthermore, the CBL was located at a more coronal position in subcrestal implants with respect to the implant shoulder (WMD = − 1.09 mm; 95% CI = − 1.43 to − 0.75; P < 0.001). The dimensions of the peri-implant mucosa seem to be affected by the positioning of the microgap and were greater at implants placed in a subcrestal position than those inserted equicrestally (WMD = 0.60 mm; 95% CI = 0.26 to 0.95; P < 0.001). While the length of the barrier epithelium was significantly greater in implants placed in a subcrestal position (WMD = 0.39 mm; 95% CI = 0.19 to 0.58; P < 0.001), no statistical significant differences were observed between equicrestal and subcrestal implant positioning for the connective tissue length (WMD = 0.17 mm; 95% CI = − 0.03 to 0.36; P = 0.10).

Conclusion

This systematic review suggests that PS implants placed in a subcrestal position have less MBL changes when compared with implants placed equicrestally. Furthermore, the location of the microgap seems to have an influence on the dimensions of peri-implant soft tissues.

Clinical relevance

When compared with PS placed in an equicrestal position, subcrestal implant positioning demonstrated less peri-implant bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leonhardt A, Grondahl K, Bergstrom C, Lekholm U (2002) Long-term follow-up of osseointegrated titanium implants using clinical, radiographic and microbiological parameters. Clin Oral Implants Res 13(2):127–132. https://doi.org/10.1034/j.1600-0501.2002.130202.x

    Article  PubMed  Google Scholar 

  2. Rasmusson L, Roos J, Bystedt H (2005) A 10-year follow-up study of titanium dioxide-blasted implants. Clin Implant Dent Relat Res 7(1):36–42. https://doi.org/10.1111/j.1708-8208.2005.tb00045.x

    Article  PubMed  Google Scholar 

  3. Pjetursson BE, Thoma D, Jung R, Zwahlen M, Zembic A (2012) A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin Oral Implants Res 23(Suppl 6):22–38. https://doi.org/10.1111/j.1600-0501.2012.02546.x

    Article  PubMed  Google Scholar 

  4. Palaska I, Tsaousoglou P, Vouros I, Konstantinidis A, Menexes G (2016) Influence of placement depth and abutment connection pattern on bone remodeling around 1-stage implants: a prospective randomized controlled clinical trial. Clin Oral Implants Res 27(2):e47–e56. https://doi.org/10.1111/clr.12527

    Article  PubMed  Google Scholar 

  5. Adell R, Lekholm U, Rockler B, Branemark PI (1981) A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 10(6):387–416. https://doi.org/10.1016/S0300-9785(81)80077-4

    Article  PubMed  Google Scholar 

  6. Albrektsson T, Zarb G, Worthington P, Eriksson AR (1986) The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1(1):11–25

    PubMed  Google Scholar 

  7. Laurell L, Lundgren D (2011) Marginal bone level changes at dental implants after 5 years in function: a meta-analysis. Clin Implant Dent Relat Res 13(1):19–28. https://doi.org/10.1111/j.1708-8208.2009.00182.x

    Article  PubMed  Google Scholar 

  8. Hermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL (2001) Biologic width around one- and two-piece titanium implants. Clin Oral Implants Res 12(6):559–571. https://doi.org/10.1034/j.1600-0501.2001.120603.x

    Article  PubMed  Google Scholar 

  9. Linkevicius T, Apse P, Grybauskas S, Puisys A (2009) The influence of soft tissue thickness on crestal bone changes around implants: a 1-year prospective controlled clinical trial. Int J Oral Maxillofac Implants 24(4):712–719

    PubMed  Google Scholar 

  10. Blanco J, Nunez V, Aracil L, Munoz F, Ramos I (2008) Ridge alterations following immediate implant placement in the dog: flap versus flapless surgery. J Clin Periodontol 35(7):640–648. https://doi.org/10.1111/j.1600-051X.2008.01237.x

    Article  PubMed  Google Scholar 

  11. Tarnow DP, Cho SC, Wallace SS (2000) The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 71(4):546–549. https://doi.org/10.1902/jop.2000.71.4.546

    Article  PubMed  Google Scholar 

  12. Rodriguez-Ciurana X, Vela-Nebot X, Segala-Torres M, Calvo-Guirado JL, Cambra J, Mendez-Blanco V, Tarnow DP (2009) The effect of interimplant distance on the height of the interimplant bone crest when using platform-switched implants. Int J Periodontics Restorative Dent 29:141–151

    PubMed  Google Scholar 

  13. Ericsson I, Persson LG, Berglundh T, Marinello CP, Lindhe J, Klinge B (1995) Different types of inflammatory reactions in peri-implant soft tissues. J Clin Periodontol 22(3):255–261

    Article  PubMed  Google Scholar 

  14. Hermann JS, Buser D, Schenk RK, Cochran DL (2000) Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J Periodontol 71(9):1412–1424. https://doi.org/10.1902/jop.2000.71.9.1412

    Article  PubMed  Google Scholar 

  15. Strietzel FP, Neumann K, Hertel M (2015) Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis. Clin Oral Implants Res 26(3):342–358. https://doi.org/10.1111/clr.12339

    Article  PubMed  Google Scholar 

  16. Hammerle CH, Bragger U, Burgin W, Lang NP (1996) The effect of subcrestal placement of the polished surface of ITI implants on marginal soft and hard tissues. Clin Oral Implants Res 7(2):111–119. https://doi.org/10.1034/j.1600-0501.1996.070204.x

    Article  PubMed  Google Scholar 

  17. Duyck J, Vandamme K, Geris L, Van Oosterwyck H, De Cooman M, Vandersloten J, Puers R, Naert I (2006) The influence of micro-motion on the tissue differentiation around immediately loaded cylindrical turned titanium implants. Arch Oral Biol 51(1):1–9. https://doi.org/10.1016/j.archoralbio.2005.04.003

    Article  PubMed  Google Scholar 

  18. Abrahamsson I, Berglundh T, Lindhe J (1997) The mucosal barrier following abutment dis/reconnection. An experimental study in dogs. J Clin Periodontol 24(8):568–572. https://doi.org/10.1111/j.1600-051X.1997.tb00230.x

    Article  PubMed  Google Scholar 

  19. Clementini M, Rossetti PH, Penarrocha D, Micarelli C, Bonachela WC, Canullo L (2014) Systemic risk factors for peri-implant bone loss: a systematic review and meta-analysis. Int J Oral Maxillofac Surg 43(3):323–334. https://doi.org/10.1016/j.ijom.2013.11.012

    Article  PubMed  Google Scholar 

  20. Zitzmann NU, Berglundh T (2008) Definition and prevalence of peri-implant diseases. J Clin Periodontol 35(8 Suppl):286–291. https://doi.org/10.1111/j.1600-051X.2008.01274.x

    Article  PubMed  Google Scholar 

  21. Hermann JS, Cochran DL, Nummikoski PV, Buser D (1997) Crestal bone changes around titanium implants. A radiographic evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. J Periodontol 68(11):1117–1130. https://doi.org/10.1902/jop.1997.68.11.1117

    Article  PubMed  Google Scholar 

  22. Hermann JS, Jones AA, Bakaeen LG, Buser D, Schoolfield JD, Cochran DL (2011) Influence of a machined collar on crestal bone changes around titanium implants: a histometric study in the canine mandible. J Periodontol 82(9):1329–1338. https://doi.org/10.1902/jop.2011.090728

    Article  PubMed  Google Scholar 

  23. Broggini N, McManus LM, Hermann JS, Medina R, Schenk RK, Buser D, Cochran DL (2006) Peri-implant inflammation defined by the implant-abutment interface. J Dent Res 85(5):473–478. https://doi.org/10.1177/154405910608500515

    Article  PubMed  Google Scholar 

  24. Jung RE, Jones AA, Higginbottom FL, Wilson TG, Schoolfield J, Buser D, Hammerle CH, Cochran DL (2008) The influence of non-matching implant and abutment diameters on radiographic crestal bone levels in dogs. J Periodontol 79(2):260–270. https://doi.org/10.1902/jop.2008.070132

    Article  PubMed  Google Scholar 

  25. Cochran DL, Bosshardt DD, Grize L, Higginbottom FL, Jones AA, Jung RE, Wieland M, Dard M (2009) Bone response to loaded implants with non-matching implant-abutment diameters in the canine mandible. J Periodontol 80(4):609–617. https://doi.org/10.1902/jop.2009.080323

    Article  PubMed  Google Scholar 

  26. Weng D, Nagata MJ, Bell M, Bosco AF, de Melo LG, Richter EJ (2008) Influence of microgap location and configuration on the periimplant bone morphology in submerged implants. An experimental study in dogs. Clin Oral Implants Res 19(11):1141–1147. https://doi.org/10.1111/j.1600-0501.2008.01564.x

    Article  PubMed  Google Scholar 

  27. Koutouzis T, Fetner M, Fetner A, Lundgren T (2011) Retrospective evaluation of crestal bone changes around implants with reduced abutment diameter placed non-submerged and at subcrestal positions: the effect of bone grafting at implant placement. J Periodontol 82(2):234–242. https://doi.org/10.1902/jop.2010.100340

    Article  PubMed  Google Scholar 

  28. Donovan R, Fetner A, Koutouzis T, Lundgren T (2010) Crestal bone changes around implants with reduced abutment diameter placed non-submerged and at subcrestal positions: a 1-year radiographic evaluation. J Periodontol 81(3):428–434. https://doi.org/10.1902/jop.2009.090317

    Article  PubMed  Google Scholar 

  29. Welander M, Abrahamsson I, Berglundh T (2009) Subcrestal placement of two-part implants. Clin Oral Implants Res 20(3):226–231. https://doi.org/10.1111/j.1600-0501.2008.01637.x

    Article  PubMed  Google Scholar 

  30. Degidi M, Perrotti V, Shibli JA, Novaes AB, Piattelli A, Iezzi G (2011) Equicrestal and subcrestal dental implants: a histologic and histomorphometric evaluation of nine retrieved human implants. J Periodontol 82(5):708–715. https://doi.org/10.1902/jop.2010.100450

    Article  PubMed  Google Scholar 

  31. Weng D, Nagata MJ, Bosco AF, de Melo LG (2011) Influence of microgap location and configuration on radiographic bone loss around submerged implants: an experimental study in dogs. Int J Oral Maxillofac Implants 26(5):941–946

    PubMed  Google Scholar 

  32. Novaes AB Jr, Barros RR, Muglia VA, Borges GJ (2009) Influence of interimplant distances and placement depth on papilla formation and crestal resorption: a clinical and radiographic study in dogs. J Oral Implantol 35:18–27

    Article  PubMed  Google Scholar 

  33. Becker J, Ferrari D, Herten M, Kirsch A, Schaer A, Schwarz F (2007) Influence of platform switching on crestal bone changes at non-submerged titanium implants: a histomorphometrical study in dogs. J Clin Periodontol 34(12):1089–1096. https://doi.org/10.1111/j.1600-051X.2007.01155.x

    Article  PubMed  Google Scholar 

  34. Becker J, Ferrari D, Mihatovic I, Sahm N, Schaer A, Schwarz F (2009) Stability of crestal bone level at platform-switched non-submerged titanium implants: a histomorphometrical study in dogs. J Clin Periodontol 36(6):532–539. https://doi.org/10.1111/j.1600-051X.2009.01413.x

    Article  PubMed  Google Scholar 

  35. Schwarz F, Mihatovic I, Golubovich V, Schar A, Sager M, Becker J (2015) Impact of abutment microstructure and insertion depth on crestal bone changes at nonsubmerged titanium implants with platform switch. Clin Oral Implants Res 26(3):287–292. https://doi.org/10.1111/clr.12478

    Article  PubMed  Google Scholar 

  36. Rodriguez X, Navajas A, Vela X, Fortuno A, Jimenez J, Nevins M (2016) Arrangement of Peri-implant connective tissue fibers around platform-switching implants with conical abutments and its relationship to the underlying bone: a human histologic study. Int J Periodontics Restorative Dent 36(4):533–540. https://doi.org/10.11607/prd.2580

    Article  PubMed  Google Scholar 

  37. Huang B, Meng H, Zhu W, Witek L, Tovar N, Coelho PG (2015) Influence of placement depth on bone remodeling around tapered internal connection implants: a histologic study in dogs. Clin Oral Implants Res 26(8):942–949. https://doi.org/10.1111/clr.12384

    Article  PubMed  Google Scholar 

  38. Schwarz F, Hegewald A, Becker J (2014) Impact of implant-abutment connection and positioning of the machined collar/microgap on crestal bone level changes: a systematic review. Clin Oral Implants Res 25(4):417–425. https://doi.org/10.1111/clr.12215

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339(jul21 1):b2700. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005

    Article  PubMed  Google Scholar 

  41. Jung BA, Harzer W, Wehrbein H, Gedrange T, Hopfenmuller W, Ludicke G, Moergel M, Diedrich P, Kunkel M (2011) Immediate versus conventional loading of palatal implants in humans: a first report of a multicenter RCT. Clin Oral Investig 15(4):495–502. https://doi.org/10.1007/s00784-010-0407-9

    Article  PubMed  Google Scholar 

  42. Esposito M, Grusovin MG, Maghaireh H and Worthington HV (2013) Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev CD003878

  43. Chen ST, Buser D (2009) Clinical and esthetic outcomes of implants placed in postextraction sites. Int J Oral Maxillofac Implants 24(Suppl):186–217

    PubMed  Google Scholar 

  44. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, Cochrane Bias Methods Group, Cochrane Statistical Methods Group (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343(oct18 2):d5928. https://doi.org/10.1136/bmj.d5928

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ten Heggeler JM, Slot DE, Van der Weijden GA (2011) Effect of socket preservation therapies following tooth extraction in non-molar regions in humans: a systematic review. Clin Oral Implants Res 22(8):779–788. https://doi.org/10.1111/j.1600-0501.2010.02064.x

    Article  PubMed  Google Scholar 

  46. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  47. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160(7):1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schwarz F, Iglhaut G, Becker J (2012) Quality assessment of reporting of animal studies on pathogenesis and treatment of peri-implant mucositis and peri-implantitis. A systematic review using the ARRIVE guidelines. J Clin Periodontol 39(Suppl 12):63–72. https://doi.org/10.1111/j.1600-051X.2011.01838.x

    Article  PubMed  Google Scholar 

  49. Romanos GE, Aydin E, Gaertner K, Nentwig GH (2015) Long-term results after subcrestal or crestal placement of delayed loaded implants. Clin Implant Dent Relat Res 17(1):133–141. https://doi.org/10.1111/cid.12084

    Article  PubMed  Google Scholar 

  50. Koutouzis T, Neiva R, Nonhoff J, Lundgren T (2013) Placement of implants with platform-switched Morse taper connections with the implant-abutment interface at different levels in relation to the alveolar crest: a short-term (1-year) randomized prospective controlled clinical trial. Int J Oral Maxillofac Implants 28(6):1553–1563. https://doi.org/10.11607/jomi.3184

    Article  PubMed  Google Scholar 

  51. Kutan E, Bolukbasi N, Yildirim-Ondur E, Ozdemir T (2015) Clinical and radiographic evaluation of marginal bone changes around platform-switching implants placed in crestal or subcrestal positions: a randomized controlled clinical trial. Clin Implant Dent Relat Res 17(Suppl 2):e364–e375. https://doi.org/10.1111/cid.12248

    Article  PubMed  Google Scholar 

  52. Pellicer-Chover H, Penarrocha-Diago M, Penarrocha-Oltra D, Gomar-Vercher S, Agustin-Panadero R, Penarrocha-Diago M (2016) Impact of crestal and subcrestal implant placement in peri-implant bone: a prospective comparative study. Med Oral Patol Oral Cir Bucal 21(1):e103–e110

    Article  PubMed  Google Scholar 

  53. Al Amri MD, Al-Johany SS, Al Baker AM, Al Rifaiy MQ, Abduljabbar TS, Al-Kheraif AA (2016) Soft tissue changes and crestal bone loss around platform-switched implants placed at crestal and subcrestal levels: 36-month results from a prospective split-mouth clinical trial. Clin Oral Implants Res 28(11):1342–1347. https://doi.org/10.1111/clr.12990

    Article  PubMed  Google Scholar 

  54. de Siqueira RA, Fontao FN, Sartori IA, Santos PG, Bernardes SR, Tiossi R (2016) Effect of different implant placement depths on crestal bone levels and soft tissue behavior: a randomized clinical trial. Clin Oral Implants Res 28(10):1227–1233. https://doi.org/10.1111/clr.12946

    Article  PubMed  Google Scholar 

  55. Veis A, Parissis N, Tsirlis A, Papadeli C, Marinis G, Zogakis A (2010) Evaluation of peri-implant marginal bone loss using modified abutment connections at various crestal level placements. Int J Periodontics Restorative Dent 30(6):609–617

    PubMed  Google Scholar 

  56. Weng D, Nagata MJ, Bell M, de Melo LG, Bosco AF (2010) Influence of microgap location and configuration on peri-implant bone morphology in nonsubmerged implants: an experimental study in dogs. Int J Oral Maxillofac Implants 25(3):540–547

    PubMed  Google Scholar 

  57. Barros RR, Novaes AB Jr, Muglia VA, Iezzi G, Piattelli A (2010) Influence of interimplant distances and placement depth on peri-implant bone remodeling of adjacent and immediately loaded Morse cone connection implants: a histomorphometric study in dogs. Clin Oral Implants Res 21(4):371–378. https://doi.org/10.1111/j.1600-0501.2009.01860.x

    Article  PubMed  Google Scholar 

  58. Cochran DL, Mau LP, Higginbottom FL, Wilson TG, Bosshardt DD, Schoolfield J, Jones AA (2013) Soft and hard tissue histologic dimensions around dental implants in the canine restored with smaller-diameter abutments: a paradigm shift in peri-implant biology. Int J Oral Maxillofac Implants 28(2):494–502. https://doi.org/10.11607/jomi.3081

    Article  PubMed  Google Scholar 

  59. Lee J, Fiorini T, Gamborena I, Wenzel BA, Schupbach P, Wikesjo UM, Susin C (2016) Effect of platform shift/switch on crestal bone levels and mucosal profile following flapless surgery and crestal/subcrestal implant placement. Clin Implant Dent Relat Res 18(1):73–81. https://doi.org/10.1111/cid.12243

    Article  PubMed  Google Scholar 

  60. Huang B, Meng H, Piao M, Xu L, Zhang L, Zhu W (2012) Influence of placement depth on bone remodeling around tapered internal connection implant: a clinical and radiographic study in dogs. J Periodontol 83(9):1164–1171. https://doi.org/10.1902/jop.2012.110617

    Article  PubMed  Google Scholar 

  61. Pontes AE, Ribeiro FS, Iezzi G, Piattelli A, Cirelli JA, Marcantonio E Jr (2008) Biologic width changes around loaded implants inserted in different levels in relation to crestal bone: histometric evaluation in canine mandible. Clin Oral Implants Res 19(5):483–490. https://doi.org/10.1111/j.1600-0501.2007.01506.x

    Article  PubMed  Google Scholar 

  62. Fickl S, Zuhr O, Stein JM, Hurzeler MB (2010) Peri-implant bone level around implants with platform-switched abutments. Int J Oral Maxillofac Implants 25(3):577–581

    PubMed  Google Scholar 

  63. Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thomsen P (1991) The soft tissue barrier at implants and teeth. Clin Oral Implants Res 2(2):81–90. https://doi.org/10.1034/j.1600-0501.1991.020206.x

    Article  PubMed  Google Scholar 

  64. Buser D, Weber HP, Donath K, Fiorellini JP, Paquette DW, Williams RC (1992) Soft tissue reactions to non-submerged unloaded titanium implants in beagle dogs. J Periodontol 63(3):225–235. https://doi.org/10.1902/jop.1992.63.3.225

    Article  PubMed  Google Scholar 

  65. Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D (1997) Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol 68(2):186–198. https://doi.org/10.1902/jop.1997.68.2.186

    Article  PubMed  Google Scholar 

  66. Tomasi C, Tessarolo F, Caola I, Wennstrom J, Nollo G, Berglundh T (2014) Morphogenesis of peri-implant mucosa revisited: an experimental study in humans. Clin Oral Implants Res 25(9):997–1003. https://doi.org/10.1111/clr.12223

    Article  PubMed  Google Scholar 

  67. Lang NP, Wetzel AC, Stich H, Caffesse RG (1994) Histologic probe penetration in healthy and inflamed peri-implant tissues. Clin Oral Implants Res 5(4):191–201. https://doi.org/10.1034/j.1600-0501.1994.050401.x

    Article  PubMed  Google Scholar 

  68. Lindhe J, Meyle J, Group DoEWoP (2008) Peri-implant diseases: consensus report of the sixth European Workshop on Periodontology. J Clin Periodontol 35:282–285

    Article  PubMed  Google Scholar 

  69. Buser D, Belser UC, Lang NP (1998) The original one-stage dental implant system and its clinical application. Periossdontol 17(1):106–118. https://doi.org/10.1111/j.1600-0757.1998.tb00128.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Cristina Esquinas, Universitat Internacional de Catalunya, for the statistical analysis. We also thank to Alberto Monje for his support in conducting this systematic review.

Funding

The work was self-funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Valles.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valles, C., Rodríguez-Ciurana, X., Clementini, M. et al. Influence of subcrestal implant placement compared with equicrestal position on the peri-implant hard and soft tissues around platform-switched implants: a systematic review and meta-analysis. Clin Oral Invest 22, 555–570 (2018). https://doi.org/10.1007/s00784-017-2301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-017-2301-1

Keywords

Navigation