Skip to main content

Advertisement

Log in

Removal of simulated biofilm: an evaluation of the effect on root surfaces roughness after scaling

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Background

Despite the development of less invasive devices, a debate exists about the benefits and risks of hand versus powered root surface instrumentation used in supportive periodontal therapy (SPT). The aim of the in vitro study was to differentially compare plaque removal efficacy and root surface roughening of newly developed sonic, ultrasonic scaler, and curettes in the hands of experienced versus less experienced operators.

Materials and methods

Sonic (AIR), ultrasonic devices (TIG), and double-gracey curettes (GRA) were utilized by seven experienced (EO) and four less experienced operators (LO) for root surface instrumentation of standardized plastic teeth on manikins’ heads in a randomized sequence. The proportion of residual simulated plaque (RSP area in %) was planimetrically assessed, and the average root surface roughness produced (Ra and ∆Ra in μm) was measured by a precision profilometer.

Results

The uninstrumented root surfaces showed a Ra of (median (Q25/Q75)) 1.00 μm (0.83/1.16). Following instrumentation, EO left significantly less RSP than LO regardless of the used instruments (20.00 % (10.00/34.00) vs. 26.00 % (12.00/44.00) p < 0.001), whereas the ∆Ra values (0.29 μm (−0.04/0.96) vs. 0.35 μm (−0.04/1.01), p = 0.237) failed to show significant differences. The surface roughness was higher with GRA followed by AIR then TIG regardless of operators’ experience (p < 0.001).

Conclusion

Within the limits of the present study, the sonic device was most efficient in plaque removal, while the ultrasonic device produced the least surface roughness.

Clinical relevance

All three tested instruments seem effective in the mechanical root debridement during SPT, whereat the ultrasonic device show the smoothest root surface of all.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Drisko CH (2001) Nonsurgical periodontal therapy. Periodontol 2000(25):77–88

    Article  Google Scholar 

  2. Khosravi M, Bahrami ZS, Atabaki MS, Shokrgozar MA, Shokri F (2004) Comparative effectiveness of hand and ultrasonic instrumentations in root surface planing in vitro. J Clin Periodontol 31:160–5. doi:10.1111/j.0303-6979.2004.00458.x

    Article  PubMed  Google Scholar 

  3. Tunkel J, Heinecke A, Flemmig TF (2002) A systematic review of efficacy of machine-driven and manual subgingival debridement in the treatment of chronic periodontitis. J Clin Periodontol 29(Suppl 3):72–81, discussion 90–1

    Article  PubMed  Google Scholar 

  4. Eick S, Bender P, Flury S, Lussi A, Sculean A (2013) In vitro evaluation of surface roughness, adhesion of periodontal ligament fibroblasts, and Streptococcus gordonii following root instrumentation with Gracey curettes and subsequent polishing with diamond-coated curettes. Clin Oral Investig 17:397–404. doi:10.1007/s00784-012-0719-z

    Article  PubMed  Google Scholar 

  5. Walmsley AD, Lea SC, Landini G, Moses AJ (2008) Advances in power driven pocket/root instrumentation. J Clin Periodontol 35:22–8. doi:10.1111/j.1600-051X.2008.01258.x

    Article  PubMed  Google Scholar 

  6. Drisko CL (1993) Scaling and root planing without overinstrumentation: hand versus power-driven scalers. Curr Opin Periodontol:78–88

  7. Hagi TT, Hofmanner P, Salvi GE, Ramseier CA, Sculean A (2013) Clinical outcomes following subgingival application of a novel erythritol powder by means of air polishing in supportive periodontal therapy: a randomized, controlled clinical study. Quintessence Int 44:753–61. doi:10.3290/j.qi.a30606

    PubMed  Google Scholar 

  8. Sculean A, Bastendorf KD, Becker C, Bush B, Einwag J, Lanoway C, Platzer U, Schmage P, Schoeneich B, Walter C, Wennstrom JL, Flemmig TF (2013) A paradigm shift in mechanical biofilm management? Subgingival air polishing: a new way to improve mechanical biofilm management in the dental practice. Quintessence Int 44:475–7. doi:10.3290/j.qi.a29615

    PubMed  Google Scholar 

  9. Graetz C, Schwendicke F, Plaumann A, Rauschenbach S, Springer C, Kahl M, Salzer S, Dorfer CE (2015) Subgingival instrumentation to remove simulated plaque in vitro: influence of operators' experience and type of instrument. Clin Oral Investig 19:987–95. doi:10.1007/s00784-014-1319-x

    Article  PubMed  Google Scholar 

  10. Rühling A, Schlemme H, Konig J, Kocher T, Schwahn C, Plagmann HC (2002) Learning root debridement with curettes and power-driven instruments. Part I: a training program to increase effectivity. J Clin Periodontol 29:622–9

    Article  PubMed  Google Scholar 

  11. Kocher T, Ruhling A, Momsen H, Plagmann HC (1997) Effectiveness of subgingival instrumentation with power-driven instruments in the hands of experienced and inexperienced operators. A study on manikins. J Clin Periodontol 24:498–504

    Article  PubMed  Google Scholar 

  12. Oberholzer R, Rateitschak KH (1996) Root cleaning or root smoothing. An in vivo study. J Clin Periodontol 23:326–30

    Article  PubMed  Google Scholar 

  13. Jones WA, O'Leary TJ (1978) The effectiveness of in vivo root planing in removing bacterial endotoxin from the roots of periodontally involved teeth. J Periodontol 49:337–42. doi:10.1902/jop.1978.49.7.337

    Article  PubMed  Google Scholar 

  14. Cobb CM (2002) Clinical significance of non-surgical periodontal therapy: an evidence-based perspective of scaling and root planing. J Clin Periodontol 29(Suppl 2):6–16

    PubMed  Google Scholar 

  15. König J, Ruhling A, Schlemme H, Kocher T, Schwahn C, Plagmann HC (2002) Learning root debridement with curettes and power-driven instruments in vitro: the role of operator motivation and self-assessment. Eur J Dent Educ 6:169–75, doi: 258 [pii]

    Article  PubMed  Google Scholar 

  16. Dahiya P, Kamal R, Gupta R, Pandit N (2011) Comparative evaluation of hand and power-driven instruments on root surface characteristics: a scanning electron microscopy study. Contemp Clin Dent 2:79–83. doi:10.4103/0976-237X.83065

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lie T, Leknes KN (1985) Evaluation of the effect on root surfaces of air turbine scalers and ultrasonic instrumentation. J Periodontol 56:522–31. doi:10.1902/jop.1985.56.9.522

    Article  PubMed  Google Scholar 

  18. Kumar P, Das SJ, Sonowal ST, Chawla J (2015) Comparison of root surface roughness produced by hand instruments and ultrasonic scalers: an in vitro study. J Clin Diagn Res 9:ZC56–60. doi:10.7860/JCDR/2015/13744.6828

    Google Scholar 

  19. Adair JG (1984) The Hawthorne effect: a reconsideration of the methodological artifact. J Appl Psychol 69:334–345

    Article  Google Scholar 

  20. Ewen SJ, Gwinnett AJ (1977) A scanning electron microscopic study of teeth following periodontal instrumentation. J Periodontol 48:92–7. doi:10.1902/jop.1977.48.2.92

    Article  PubMed  Google Scholar 

  21. Wilkinson RF, Maybury JE (1973) Scanning electron microscopy of the root surface following instrumentation. J Periodontol 44:559–63. doi:10.1902/jop.1973.44.9.559

    Article  PubMed  Google Scholar 

  22. Singh S, Uppoor A, Nayak D (2012) A comparative evaluation of the efficacy of manual, magnetostrictive and piezoelectric ultrasonic instruments—an in vitro profilometric and SEM study. J Appl Oral Sci 20:21–6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Solis Moreno C, Santos A, Nart J, Levi P, Velasquez A, Sanz Moliner J (2012) Evaluation of root surface microtopography following the use of four instrumentation systems by confocal microscopy and scanning electron microscopy: an in vitro study. J Periodontal Res 47:608–15. doi:10.1111/j.1600-0765.2012.01473.x

    Article  PubMed  Google Scholar 

  24. Cheetham WA, Wilson M, Kieser JB (1988) Root surface debridement—an in vitro assessment. J Clin Periodontol 15:288–92

    Article  PubMed  Google Scholar 

  25. Tal H, Panno JM, Vaidyanathan TK (1985) Scanning electron microscope evaluation of wear of dental curettes during standardized root planing. J Periodontol 56:532–6. doi:10.1902/jop.1985.56.9.532

    Article  PubMed  Google Scholar 

  26. Lee A, Heasman PA, Kelly PJ (1996) An in vitro comparative study of a reciprocating scaler for root surface debridement. J Dent 24:81–6

    Article  PubMed  Google Scholar 

  27. Aspriello SD, Piemontese M, Levrini L, Sauro S (2011) Ultramorphology of the root surface subsequent to hand-ultrasonic simultaneous instrumentation during non-surgical periodontal treatments: an in vitro study. J Appl Oral Sci 19:74–81

    Article  PubMed  Google Scholar 

  28. Mishra MK, Prakash S (2013) A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: a morphological and thermal analysis. Contemp Clin Dent 4:198–205. doi:10.4103/0976-237X.114881

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rühling A, Bernhardt O, Kocher T (2005) Subgingival debridement with a teflon-coated sonic scaler insert in comparison to conventional instruments and assessment of substance removal on extracted teeth. Quintessence Int 36:446–52

    PubMed  Google Scholar 

  30. Walmsley AD, Lea SC, Felver B, King DC, Price GJ (2013) Mapping cavitation activity around dental ultrasonic tips. Clin Oral Investig 17:1227–34. doi:10.1007/s00784-012-0802-5

    Article  PubMed  Google Scholar 

  31. Kocher T, Ruhling A, Herweg M, Plagman HC (1996) Proof of efficacy of different modified sonic scaler inserts used for debridement in furcations—a dummy head trial. J Clin Periodontol 23:662–9

    Article  PubMed  Google Scholar 

  32. Fleischer HC, Mellonig JT, Brayer WK, Gray JL, Barnett JD (1989) Scaling and root planing efficacy in multirooted teeth. J Periodontol 60:402–9. doi:10.1902/jop.1989.60.7.402

    Article  PubMed  Google Scholar 

  33. Paramashivaiah R, Prabhuji ML (2013) Mechanized scaling with ultrasonics: perils and proactive measures. J Indian Soc Periodontol 17:423–428. doi:10.4103/0972-124X.118310

    Article  PubMed  PubMed Central  Google Scholar 

  34. Graetz C, Plaumann A, Bielfeldt J, Tillner A, Salzer S, Dorfer CE (2015) Efficacy versus health risks: an in vitro evaluation of power-driven scalers. J Indian Soc Periodontol 19:18–24. doi:10.4103/0972-124X.145796

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to their colleagues and students: A. Hackmann, A. Boels, L. Bruchmann, S. Harbeck, T. Pousset, and S. Sälzer, who contributed to this study, treating the manikins as outlined.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Graetz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The work was supported by the Clinic for Conservative Dentistry and Periodontology, University of Kiel, Kiel, Germany, and technically (instruments provided) supported by the Loser Company (Loser & Co, Leverkusen, Germany) and W&H Company (W&H, Bürmoos, Austria).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Support and financial relationships

This study was technically (instruments provided) supported by the Loser Company (Loser & Co, Leverkusen, Germany) and W&H Company (W&H, Bürmoos, Austria)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graetz, C., Plaumann, A., Wittich, R. et al. Removal of simulated biofilm: an evaluation of the effect on root surfaces roughness after scaling. Clin Oral Invest 21, 1021–1028 (2017). https://doi.org/10.1007/s00784-016-1861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-016-1861-9

Keywords

Navigation