Skip to main content
Log in

Multibracket appliance: impression defaults and their reduction by blocking-out  —  a three-dimensional study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study examines accuracy of dental impressions and following plaster models taken during treatment with fixed appliances.

Materials and methods

A maxillary typodont was provided with brackets. Three examiners took impressions three times each of the variants: brackets only, archwire fixed by alastics, ligatures or Kobayashi-hooks, and brackets and archwire covered completely or just on the gingival side by protection or impression wax. Casts were scanned using Activity102®. Virtual models were compared to the scan of the typodont using Comparison®. Differences were measured and descriptively analyzed. Estimated means with 95 % confidence intervals were computed. Significance was assessed using linear mixed models.

Results

While pyramidal reference blocks had a mean difference of 0.019 mm (95 % CI = 0.017–0.021 mm) to the master model, teeth without attachments showed 0.097 mm (95 % CI = 0.082–0.111 mm), and teeth with brackets 0.169 mm (95 % CI = 0.156–0.182 mm) (p < 0.001). Smallest mean was found when using protection wax only on the gingival bracket side (0.152 mm (95 % CI = 0.113–0.192 mm)). Incisors deviated most (0.258 mm (95 % CI = 0.239–0.277 mm)).

Conclusions

Teeth with brackets make impressions more inaccurate because of undercuts. Removing the archwire before taking the impression or covering the brackets on the gingival side shows tendencies toward better precision.

Clinical relevance

Taking impressions during treatment with fixed appliances, some inaccuracy has to be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin N, Martin MV, Jedynakiewicz NM (2007) The dimensional stability of dental impression materials following immersion in disinfecting solutions. Dent Mater 23(6):760–768. doi:10.1016/j.dental.2007.01.004

    Article  PubMed  Google Scholar 

  2. Muzaffar D, Braden M, Parker S, Patel MP (2012) The effect of disinfecting solutions on the dimensional stability of dental alginate impression materials. Dent Mater 28(7):749–755. doi:10.1016/j.dental.2012.03.013

    Article  PubMed  Google Scholar 

  3. Rodriguez JM, Bartlett DW (2011) The dimensional stability of impression materials and its effect on in vitro tooth wear studies. Dent Mater 27(3):253–258. doi:10.1016/j.dental.2010.10.010

    Article  PubMed  Google Scholar 

  4. Taylor RL, Wright PS, Maryan C (2002) Disinfection procedures: their effect on the dimensional accuracy and surface quality of irreversible hydrocolloid impression materials and gypsum casts. Dent Mater 18(2):103–110

    Article  PubMed  Google Scholar 

  5. Fleming PS, Marinho V, Johal A (2011) Orthodontic measurements on digital study models compared with plaster models: a systematic review. Orthod Craniofacial Res 14(1):1–16. doi:10.1111/j.1601-6343.2010.01503.x

    Article  Google Scholar 

  6. Ayoub AF, Wray D, Moos KF, Jin J, Niblett TB, Urquhart C, Mowforth P, Siebert P (1997) A three-dimensional imaging system for archiving dental study casts: a preliminary report. Int J Adult Orthodon Orthognath Surg 12(1):79–84

    PubMed  Google Scholar 

  7. Berkowitz S, Pruzansky S (1968) Stereophotogrammerty of serial casts of cleft palate. Angle Orthod 38(2):136–149. doi:10.1043/0003-3219(1968)038<0136:SOSCOC>2.0.CO;2

    PubMed  Google Scholar 

  8. Ryden H, Bjelkhagen H, Martensson B (1982) Tooth position measurements on dental casts using holographic images. Am J Orthod 81(4):310–313

    Article  PubMed  Google Scholar 

  9. Takasaki H (1970) Moire topography. Appl Opt 9(6):1467–1472

    Article  PubMed  Google Scholar 

  10. Trefny P, Smahel Z, Formanek P, Peterka M (2004) Three-dimensional analysis of maxillary dental casts using fourier transform profilometry: precision and reliability of the measurement. Cleft Palate Craniofac J 41(1):20–26. doi:10.1597/02-097

    Article  PubMed  Google Scholar 

  11. Asquith J, Gillgrass T, Mossey P (2007) Three-dimensional imaging of orthodontic models: a pilot study. Eur J Orthod 29(5):517–522. doi:10.1093/ejo/cjm044

    Article  PubMed  Google Scholar 

  12. Dalstra M, Melsen B (2009) From alginate impressions to digital virtual models: accuracy and reproducibility. J Orthod 36(1):36–41 discussion 14. doi:10.1179/14653120722905

    Article  PubMed  Google Scholar 

  13. Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ (2009) Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Constituent Soc Am Board Orthod 136(1):16 e11–16 e14 discussion 16. doi:10.1016/j.ajodo.2008.11.019

    Google Scholar 

  14. Wiranto MG, Engelbrecht WP, Tutein Nolthenius HE, van der Meer WJ, Ren Y (2013) Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. Am J Orthod DentofacOrthop Off Publ Am Assoc Orthod Constituent Soc Am Board Orthod 143(1):140–147. doi:10.1016/j.ajodo.2012.06.018

    Google Scholar 

  15. Alcan T, Ceylanoglu C, Baysal B (2009) The relationship between digital model accuracy and time-dependent deformation of alginate impressions. Angle Orthod 79(1):30–36. doi:10.2319/100307-475.1

    Article  PubMed  Google Scholar 

  16. Keating AP, Knox J, Bibb R, Zhurov AI (2008) A comparison of plaster, digital and reconstructed study model accuracy. J Orthod 35(3):191–201 discussion 175. doi:10.1179/146531207225022626

    Article  PubMed  Google Scholar 

  17. Mullen SR, Martin CA, Ngan P, Gladwin M (2007) Accuracy of space analysis with emodels and plaster models. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Constituent Soc Am Board Orthod 132(3):346–352. doi:10.1016/j.ajodo.2005.08.044

    Google Scholar 

  18. Santoro M, Galkin S, Teredesai M, Nicolay OF, Cangialosi TJ (2003) Comparison of measurements made on digital and plaster models. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Constituent Soc Am Board Orthod 124(1):101–105. doi:10.1016/S0889540603001525

    Google Scholar 

  19. Stevens DR, Flores-Mir C, Nebbe B, Raboud DW, Heo G, Major PW (2006) Validity, reliability, and reproducibility of plaster vs digital study models: comparison of peer assessment rating and Bolton analysis and their constituent measurements. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Constituent Soc Am Board Orthod 129(6):794–803. doi:10.1016/j.ajodo.2004.08.023

    Google Scholar 

  20. Wriedt S, Schmidtmann I, Niemann M, Wehrbein H (2013) Digital 3D image of bimaxillary casts connected by a vestibular scan. J Orofac Orthop Fortschr Kieferorthop Organ/Off J Deut Ges Kieferorthop 74(4):309–318. doi:10.1007/s00056-013-0152-1

    Article  Google Scholar 

  21. DeLong R, Heinzen M, Hodges JS, Ko CC, Douglas WH (2003) Accuracy of a system for creating 3D computer models of dental arches. J Dent Res 82(6):438–442

    Article  PubMed  Google Scholar 

  22. Persson AS, Oden A, Andersson M, Sandborgh-Englund G (2009) Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness. Dent Mater 25(7):929–936. doi:10.1016/j.dental.2009.01.100

    Article  PubMed  Google Scholar 

  23. Asquith JA, McIntyre GT (2012) Dental arch relationships on three-dimensional digital study models and conventional plaster study models for patients with unilateral cleft lip and palate. Cleft Palate Craniofac J 49(5):530–534. doi:10.1597/10-099

    Article  PubMed  Google Scholar 

  24. Redlich M, Weinstock T, Abed Y, Schneor R, Holdstein Y, Fischer A (2008) A new system for scanning, measuring and analyzing dental casts based on a 3D holographic sensor. Orthod Craniofacial Res 11(2):90–95. doi:10.1111/j.1601-6343.2007.00417.x

    Article  Google Scholar 

  25. Rheude B, Sadowsky PL, Ferriera A, Jacobson A (2005) An evaluation of the use of digital study models in orthodontic diagnosis and treatment planning. Angle Orthod 75(3):300–304. doi:10.1043/0003-3219(2005)75[300:AEOTUO]2.0.CO;2

    PubMed  Google Scholar 

  26. Braumann B, Rosenhayn SE, Bourauel C, Jäger A (2001) Two- or three-dimensional cast analysis in patients with cleft lip and palate? J Orofac Orthop Fortschr Kieferorthop Organ/Off J Deut Ges Kieferorthop 62(6):451–465

    Article  Google Scholar 

  27. Boldt F, Weinzierl C, Hertrich K, Hirschfelder U (2009) Comparison of the spatial landmark scatter of various 3D digitalization methods. J Orofac Orthop Fortschr Kieferorthop Organ/Off J Deut Ges Kieferorthop 70(3):247–263. doi:10.1007/s00056-009-0902-2

    Article  Google Scholar 

  28. Craig RG (1988) Review of dental impression materials. Adv Dent Res 2(1):51–64

    PubMed  Google Scholar 

  29. Peters MC, Tieleman A (1992) Accuracy and dimensional stability of a combined hydrocolloid impression system. J Prosthet Dent 67(6):873–878

    Article  PubMed  Google Scholar 

  30. Christensen GJ (1966) Marginal fit of gold inlay castings. J Prosthet Dent 16(2):297–305

    Article  PubMed  Google Scholar 

  31. Cohen BI, Pagnillo M, Deutsch AS, Musikant BL (1995) Dimensional accuracy of three different alginate impression materials. J Prosthodont 4(3):195–199

    Article  PubMed  Google Scholar 

  32. Sousa MV, Vasconcelos EC, Janson G, Garib D, Pinzan A (2012) Accuracy and reproducibility of 3-dimensional digital model measurements. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Constituent Soc Am Board Orthod 142(2):269–273. doi:10.1016/j.ajodo.2011.12.028

    Google Scholar 

  33. Wada K (1992) Studies on dimensional accuracy of working casts made by various impression techniques—influence of undercuts on dimensional accuracy. Kokubyo Gakkai Zasshi 59(2):518–540

    Article  PubMed  Google Scholar 

  34. Grünheid T, McCarthy SD, Larson BE (2014) Clinical use of a direct chairside oral scanner: an assessment of accuracy, time, and patient acceptance. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Constituent Soc Am Board Orthod 146(5):673–682. doi:10.1016/j.ajodo.2014.07.023

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Wriedt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wriedt, S., Foersch, M., Muhle, J.D. et al. Multibracket appliance: impression defaults and their reduction by blocking-out  —  a three-dimensional study. Clin Oral Invest 20, 365–372 (2016). https://doi.org/10.1007/s00784-015-1514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-015-1514-4

Keywords

Navigation